Multi-spot laser lock-in thermography for real-time imaging of cracks in semiconductor chips during a manufacturing process

Cited 20 time in webofscience Cited 16 time in scopus
  • Hit : 431
  • Download : 0
This article proposes a new multi-spot laser lock-in thermography (MLLT) system for real-time imaging of cracks in semiconductor chips. The proposed MLLT system is able to inspect a semiconductor chip in real-time during its manufacturing process by simultaneously generating thermal waves on multiple points of the target semiconductor chip surface using multi-spot pulsed laser beams and measuring the corresponding thermal responses using a high-speed infrared (IR) camera. In particular, the MLLT system offers the following advantages for the semiconductor chip inspection: (1) complete non-contact, non-destructive and non-intrusive inspection, (2) real-time crack inspection with fast data acquisition and processing, (3) baseline-free crack visualization using only current-state data, making it possible to avoid false alarms caused by operational and environmental variations and (4) high detectability of cracks. To realize the MLLT system, optical components for multi-spot thermal wave generation are designed through an optical analysis and integrated with the high-speed IR camera, a close-up lens and a personal computer. The developed MLLT system is then experimentally demonstrated using actual semiconductor chips with real cracks produced during the manufacturing process. The experimental results reveal that the total inspection time including the data acquisition and processing takes less than 1 s for each semiconductor chip, and cracks in the range of 20 mu m are successfully detected.
Publisher
ELSEVIER SCIENCE SA
Issue Date
2016-03
Language
English
Article Type
Article
Citation

JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, v.229, pp.94 - 101

ISSN
0924-0136
DOI
10.1016/j.jmatprotec.2015.09.020
URI
http://hdl.handle.net/10203/207614
Appears in Collection
CE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 20 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0