Investigation on Cryogenic Refrigerator and Cooling Schemes for Long Distance HTS Cable

Cited 4 time in webofscience Cited 7 time in scopus
  • Hit : 380
  • Download : 0
High-temperature superconducting (HTS) cable is one of the most prospective superconducting technologies for its low electric power transmission loss and high power density. One difficulty of practicing this technology is maintaining the HTS cable at a cryogenic temperature approximately at 70 K. The types of cryogenic refrigerators are briefly reviewed to apply in long-distance HTS cables. Recuperative-type refrigerators, such as Brayton and Joule-Thomson (JT) refrigerators, are more appropriate to satisfy the required high cooling power. The theoretical reliability of the newly proposed dual mixed refrigerant (DMR) JT refrigerator is analyzed. The cycle configuration of the DMR JT refrigerator is more complex than that of a Brayton refrigerator; however, the degradation of reliability was not significant. Furthermore, a remote operation apart from the compressor is possible in the JT refrigerator without moving components inside the cold box. This is the most desirable characteristic for long-distance HTS cable cooling. Finally, the advantage of using an oxygen and nitrogen mixture as the circulating coolant is discussed. The number of cooling stations can be reduced in a long-distance HTS cable by lowering the coolant feeding temperature.
Publisher
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
Issue Date
2015-06
Language
English
Article Type
Article
Keywords

SUPERCONDUCTORS

Citation

IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, v.25, no.3

ISSN
1051-8223
DOI
10.1109/TASC.2014.2373492
URI
http://hdl.handle.net/10203/205652
Appears in Collection
ME-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 4 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0