Nanohole-Structured and Palladium-Embedded 3D Porous Graphene for Ultrahigh Hydrogen Storage and CO Oxidation Multifunctionalities

Cited 114 time in webofscience Cited 0 time in scopus
  • Hit : 314
  • Download : 0
Atomic-scale defects on carbon nanostructures have been considered as detrimental factors and critical problems to be eliminated in order to fully utilize their intrinsic material properties such as ultrahigh mechanical stiffness and electrical conductivity. However, defects that can be intentionally controlled through chemical and physical treatments are reasonably expected to bring benefits in various practical engineering applications such as desalination thin membranes, photochemical catalysts, and energy storage materials. Herein, we report a defect-engineered self-assembly procedure to produce a three-dimensionally nanohole-structured and palladium-embedded porous graphene hetero-nanostructure having ultrahigh hydrogen storage and CO oxidation multifunctionalities. Under multistep microwave reactions, agglomerated palladium nanoparticles having diameters of similar to 10 nm produce physical nanoholes in the basal-plane structure of graphene sheets, while much smaller palladium nanoparticles are readily impregnated inside graphene layers and bonded on graphene surfaces. The present results show that the defect-engineered hetero-nanostructure has a similar to 5.4 wt % hydrogen storage capacity under 7.5 MPa and CO oxidation catalytic activity at 190 degrees C The defect-laden graphene can be highly functionalized for multipurpose applications such as molecule absorption, electrochemical energy storage, and catalytic activity, resulting in a pathway to nanoengineering based on underlying atomic scale and physical defects.
Publisher
AMER CHEMICAL SOC
Issue Date
2015-07
Language
English
Article Type
Article
Citation

ACS NANO, v.9, no.7, pp.7343 - 7351

ISSN
1936-0851
DOI
10.1021/acsnano5b02337
URI
http://hdl.handle.net/10203/205411
Appears in Collection
EEW-Journal Papers(저널논문)ME-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 114 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0