Low complexity and high accuracy angle of arrival estimation using eigenvalue decomposition with extension to 2D AOA and power estimation

Cited 3 time in webofscience Cited 13 time in scopus
  • Hit : 166
  • Download : 0
In this paper, an angle of arrival (AOA) estimator is presented. Accurate AOA estimation is very crucial for many applications such as wireless positioning and signal enhancement using space processing techniques. The proposed estimator is based upon applying the eigenvalue decomposition (EVD) method on the crosscorrelation matrix of the received signals at two sides of the antenna array doublets. The proposed method is named the eigenvalue-decomposition-based AOA (EDBA) estimator. In comparison with the ESPRIT algorithm, the EDBA has less complexity because the decomposition in the EDBA method is performed only once and on a smaller matrix dimension than that in the ESPRIT algorithm where the decomposition is performed twice. The other advantage is that the EDBA method has better performance than the ESPRIT algorithm. The EDBA is also extended to two-dimensional (2D) AOA estimation with automatic pairing in two ways. The first one performs the 2D AOA estimation by considering the eigenvalues of the crosscorrelation matrix to estimate the azimuth angles and their corresponding eigenvectors to estimate their corresponding elevation angles. Thus, the 2D AOA estimation is performed with automatic pairing and without the need for any pairing or searching techniques. The first 2D extension of the EDBA is named the EDBA-2D estimator. Another 2D AOA estimator that is based upon the EDBA method is also presented and named the Two-EDBA estimator. This second 2D estimator performs the pairing between the azimuth and elevation angles using the alignment of the eigenvalues' magnitudes. An additional advantage for the EDBA estimator is the fact that it provides an estimate for the received signal power paired automatically with its corresponding AOA estimate. Simulations of the proposed EDBA method and its 2D extensions with the signals' power estimation are shown to assess their performance.
Publisher
SPRINGER INTERNATIONAL PUBLISHING AG
Issue Date
2011
Language
English
Article Type
Article
Keywords

ROTATIONAL INVARIANCE TECHNIQUES; SIGNAL PARAMETERS; UNITARY ESPRIT; 2-D; SVD; MATRIX; ARRAYS; DOA

Citation

EURASIP JOURNAL ON WIRELESS COMMUNICATIONS AND NETWORKING

ISSN
1687-1499
DOI
10.1186/1687-1499-2011-123
URI
http://hdl.handle.net/10203/204076
Appears in Collection
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 3 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0