Enhancing the dielectric properties of highly compatible new polyimide/gamma-ray irradiated MWCNT nanocomposites

Cited 16 time in webofscience Cited 15 time in scopus
  • Hit : 240
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorAkhter, Toheedko
dc.contributor.authorMun, Sung Cikko
dc.contributor.authorSaeed, Shaukatko
dc.contributor.authorPark, O. Okko
dc.contributor.authorSiddiqi, Humaira Masoodko
dc.date.accessioned2016-04-15T03:13:29Z-
dc.date.available2016-04-15T03:13:29Z-
dc.date.created2015-10-02-
dc.date.created2015-10-02-
dc.date.created2015-10-02-
dc.date.issued2015-
dc.identifier.citationRSC ADVANCES, v.5, no.87, pp.71183 - 71189-
dc.identifier.issn2046-2069-
dc.identifier.urihttp://hdl.handle.net/10203/204053-
dc.description.abstractNovel polyimide/gamma-ray irradiated MWCNT (PI/gamma-MWCNT) nanocomposites with improved dielectric properties were fabricated by casting and curing processes. The interfacial interactions between the two domains, i.e. PI and MWCNTs, were enhanced by hydrogen bonding between the hydroxyl groups present on PI and modified CNTs. A PI matrix having pendant phenolic hydroxyl groups was derived from pyromellitic dianhydride (PMDA) and diamine monomer 4,4'-diamino-4 ''-hydroxytriphenylmethane. MWCNTs (5-20 wt%) were dispersed in the synthesized PI matrix. Before addition to PI, the surface of MWCNTs was equipped with hydroxyl and carboxylic groups by irradiating with gamma-rays under a dry oxygen environment. Surface examination of PI/gamma-MWCNTs composite films by scanning electron microscopy (SEM) revealed that MWCNTs are uniformly dispersed and completely wrapped by the PI matrix, most likely due to the hydrogen bonding. The influence of greater adhesion of MWCNTs with PI matrix on the dielectric, visco-elastic, and mechanical properties of final PI/gamma-MWCNTs nanocomposites was explored using appropriate analytical techniques. The composite films exhibited high dielectric constant, a 7.6 fold improvement as compared to pristine PI. The storage modulus (E') and glass transition temperature (T-g) demonstrated an improvement of 1.4 and 1.2 fold, respectively. Similarly, mechanical and thermal properties were also found to be improved remarkably. We believe that significant property enhancement of PI/gamma-MWCNTs nanocomposites is the direct consequence of increased interface compatibility via hydrogen bonding between the polymer matrix and the carbon nano-filler.-
dc.languageEnglish-
dc.publisherROYAL SOC CHEMISTRY-
dc.subjectNANOTUBE/CYANATE ESTER COMPOSITES-
dc.subjectFUNCTIONALIZED GRAPHENE OXIDE-
dc.subjectHIGH THERMAL-CONDUCTIVITY-
dc.subjectPOLYMER COMPOSITES-
dc.subjectCARBON NANOTUBES-
dc.subjectENERGY-STORAGE-
dc.subject3-PHASE NANOCOMPOSITES-
dc.subjectELECTRICAL-PROPERTIES-
dc.subjectMECHANICAL-PROPERTIES-
dc.subjectHIGH-PERMITTIVITY-
dc.titleEnhancing the dielectric properties of highly compatible new polyimide/gamma-ray irradiated MWCNT nanocomposites-
dc.typeArticle-
dc.identifier.wosid000360445500058-
dc.identifier.scopusid2-s2.0-84940568789-
dc.type.rimsART-
dc.citation.volume5-
dc.citation.issue87-
dc.citation.beginningpage71183-
dc.citation.endingpage71189-
dc.citation.publicationnameRSC ADVANCES-
dc.identifier.doi10.1039/c5ra12109d-
dc.contributor.localauthorPark, O. Ok-
dc.contributor.nonIdAuthorAkhter, Toheed-
dc.contributor.nonIdAuthorSaeed, Shaukat-
dc.contributor.nonIdAuthorSiddiqi, Humaira Masood-
dc.type.journalArticleArticle-
dc.subject.keywordPlusNANOTUBE/CYANATE ESTER COMPOSITES-
dc.subject.keywordPlusFUNCTIONALIZED GRAPHENE OXIDE-
dc.subject.keywordPlusHIGH THERMAL-CONDUCTIVITY-
dc.subject.keywordPlusPOLYMER COMPOSITES-
dc.subject.keywordPlusCARBON NANOTUBES-
dc.subject.keywordPlusENERGY-STORAGE-
dc.subject.keywordPlus3-PHASE NANOCOMPOSITES-
dc.subject.keywordPlusELECTRICAL-PROPERTIES-
dc.subject.keywordPlusMECHANICAL-PROPERTIES-
dc.subject.keywordPlusHIGH-PERMITTIVITY-
Appears in Collection
CBE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 16 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0