Accurate Dynamic Modeling of Helical Ionic Polymer-Metal Composite Actuator Based on Intrinsic Equations

Cited 4 time in webofscience Cited 4 time in scopus
  • Hit : 180
  • Download : 0
This paper presents dynamic modeling of an innovative contractible ionic polymer-metal composites (IPMC) actuator with a helical configuration. The helical shaped IPMC actuator is fabricated through the thermal treatment of an IPMC strip, which is helically coiled on a glass rod. This type of a soft actuator can be used to realize not only bending motion but also torsional and longitudinal motion. For the first time, an explicit analytical expression is developed for the computation of mode shapes and dynamic responses of a helical IPMC actuator based on the intrinsic equations of the naturally curved and twisted beam. The numerical transfer-matrix method is used to solve the systems of 12 linear ordinary differential equations with boundary conditions. In particular, the effect of the structural parameters on the performance of the helical IPMC actuator is evaluated, using experimental results and an analytical model. The validation of the proposed model is achieved through comparison with computational results using a commercial finite-element (FE) program as well as experimental results. The present experimental and theoretical results show that diameter, among the structural parameters, plays an important role in the actuation performance of a helical IPMC actuator. The proposed modeling is general and can also be used in solving other cylindrical or noncylindrical helical IPMC actuators with different cross-sectional shapes as well as various end conditions.
Publisher
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
Issue Date
2015-08
Language
English
Article Type
Article
Citation

IEEE-ASME TRANSACTIONS ON MECHATRONICS, v.20, no.4, pp.1680 - 1688

ISSN
1083-4435
DOI
10.1109/TMECH.2014.2347356
URI
http://hdl.handle.net/10203/203998
Appears in Collection
ME-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 4 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0