Photovoltaic light absorber with spatial energy band gradient using PbS quantum dot layers

Cited 7 time in webofscience Cited 8 time in scopus
  • Hit : 303
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorJang, Jihoonko
dc.contributor.authorSong, Jung Hoonko
dc.contributor.authorChoi, Hyekyoungko
dc.contributor.authorBaik, Seung Jaeko
dc.contributor.authorJeong, Soheeko
dc.date.accessioned2016-04-15T02:58:47Z-
dc.date.available2016-04-15T02:58:47Z-
dc.date.created2015-09-07-
dc.date.created2015-09-07-
dc.date.issued2015-10-
dc.identifier.citationSOLAR ENERGY MATERIALS AND SOLAR CELLS, v.141, pp.270 - 274-
dc.identifier.issn0927-0248-
dc.identifier.urihttp://hdl.handle.net/10203/203875-
dc.description.abstractUsing a combination of quantum dots (QDs) of different sizes, and thus different bandgaps, to extend the light-harvesting spectrum of a photovoltaic device in tandem architecture is a promising strategy for increasing the solar cell efficiency. In this study, we propose a new architecture for a solar cell device consisting of a graded-bandgap active layer made of lead sulfide QDs of different sizes and based on the structure of the Schottky junction. Colloidal PbS QDs with bandgaps of 1.55, 1.44, and 1.36 eV were synthesized and used to construct a series of Schottky junction solar cells. Cells with a graded-bandgap active layer exhibited an increase in short-circuit current density (J(sc)) but yielded lower open-circuit voltage (V-oc) compared with cells having a uniform bandgap. We found that adding a thin electron energy-boosting layer (EEB) made from 1.55-eV-bandgap QDs can partially compensate for the thermalization loss, and thus enhance J(sc) and recover V-oc. Consequently, this study provides a conceptual basis for further improvement in colloidal QD-based solar cells.-
dc.languageEnglish-
dc.publisherELSEVIER SCIENCE BV-
dc.subjectSOLAR-CELLS-
dc.subjectNANOPARTICLES-
dc.subjectPERFORMANCE-
dc.subjectEFFICIENCY-
dc.titlePhotovoltaic light absorber with spatial energy band gradient using PbS quantum dot layers-
dc.typeArticle-
dc.identifier.wosid000359504200033-
dc.identifier.scopusid2-s2.0-84934957886-
dc.type.rimsART-
dc.citation.volume141-
dc.citation.beginningpage270-
dc.citation.endingpage274-
dc.citation.publicationnameSOLAR ENERGY MATERIALS AND SOLAR CELLS-
dc.identifier.doi10.1016/j.solmat.2015.06.007-
dc.contributor.nonIdAuthorJang, Jihoon-
dc.contributor.nonIdAuthorChoi, Hyekyoung-
dc.contributor.nonIdAuthorBaik, Seung Jae-
dc.contributor.nonIdAuthorJeong, Sohee-
dc.type.journalArticleArticle-
dc.subject.keywordAuthorPbS quantum dot solar cell-
dc.subject.keywordAuthorSchottky junction solar cell-
dc.subject.keywordAuthorGraded bandgap-
dc.subject.keywordAuthorElectron energy booster-
dc.subject.keywordPlusSOLAR-CELLS-
dc.subject.keywordPlusNANOPARTICLES-
dc.subject.keywordPlusPERFORMANCE-
dc.subject.keywordPlusEFFICIENCY-
Appears in Collection
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 7 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0