Combined transcriptome and proteome analysis of Escherichia coli during high cell density culture

Cited 129 time in webofscience Cited 0 time in scopus
  • Hit : 445
  • Download : 158
DC FieldValueLanguage
dc.contributor.authorYoon, SHko
dc.contributor.authorHan, MJko
dc.contributor.authorLee, SangYupko
dc.contributor.authorJeong, Kijunko
dc.contributor.authorYoo, JSko
dc.date.accessioned2010-11-22T04:52:47Z-
dc.date.available2010-11-22T04:52:47Z-
dc.date.created2012-02-06-
dc.date.created2012-02-06-
dc.date.created2012-02-06-
dc.date.issued2003-03-
dc.identifier.citationBIOTECHNOLOGY AND BIOENGINEERING, v.81, pp.753 - 767-
dc.identifier.issn0006-3592-
dc.identifier.urihttp://hdl.handle.net/10203/20220-
dc.description.abstractCombined transcriptome and proteome analysis was carried out to understand metabolic and physiological changes of Escherichia coli during the high cell density cultivation (HCDC). The expression of genes of TCA cycle enzymes, NADH dehydrogenase and ATPase, was up-regulated during the exponential fed-batch period and was down-regulated afterward. However, expression of most of the genes involved in glycolysis and pentose phosphate pathway was up-regulated at the stationary phase. The expression of most of amino acid biosynthesis genes was down-regulated as cell density increased, which seems to be the major reason for the reduced specific productivity of recombinant proteins during HCDC. The expression of chaperone genes increased with cell density, suggesting that the high cell density condition itself can be stressful to the cells. Severe competition for oxygen at high cell density seemed to make cells use cytochrome bd, which is less efficient but has a high oxygen affinity than cytochrome boa. Population cell density itself strongly affected the expression of porin protein genes, especially ompF, and hence the permeability of the outer membrane. Expression of phosphate starvation genes was most strongly up-regulated toward the end of cultivation. It was also found that sigma(E) (rpoE) plays a more important role than us (rpoS) at the stationary phase of HCDC. These findings should be invaluable in designing metabolic engineering and fermentation strategies for the production of recombinant proteins and metabolites by HCDC of E. coli. (C) 2003 Wiley Periodicals, Inc.-
dc.languageEnglish-
dc.language.isoen_USen
dc.publisherJOHN WILEY & SONS INC-
dc.titleCombined transcriptome and proteome analysis of Escherichia coli during high cell density culture-
dc.typeArticle-
dc.identifier.wosid000181191000001-
dc.identifier.scopusid2-s2.0-0037473189-
dc.type.rimsART-
dc.citation.volume81-
dc.citation.beginningpage753-
dc.citation.endingpage767-
dc.citation.publicationnameBIOTECHNOLOGY AND BIOENGINEERING-
dc.embargo.liftdate9999-12-31-
dc.embargo.terms9999-12-31-
dc.contributor.localauthorLee, SangYup-
dc.contributor.localauthorJeong, Kijun-
dc.contributor.nonIdAuthorYoon, SH-
dc.contributor.nonIdAuthorHan, MJ-
dc.contributor.nonIdAuthorYoo, JS-
dc.type.journalArticleArticle-
dc.subject.keywordAuthortranscriptome-
dc.subject.keywordAuthorproteome-
dc.subject.keywordAuthorhigh cell density cultivation-
dc.subject.keywordAuthorEscherichia coli-
dc.subject.keywordPlusGENE-EXPRESSION-
dc.subject.keywordPlusGROWTH-RATE-
dc.subject.keywordPlusFED-BATCH-
dc.subject.keywordPlusSTRESS-
dc.subject.keywordPlusCULTIVATION-
dc.subject.keywordPlusSTABILITY-
dc.subject.keywordPlusPATTERNS-
dc.subject.keywordPlusGENOMICS-
dc.subject.keywordPlusPATHWAYS-
dc.subject.keywordPlusGLUCOSE-
Appears in Collection
CBE-Journal Papers(저널논문)
Files in This Item
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 129 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0