Constant-current regulator-based battery-supercapacitor hybrid architecture for high-rate pulsed load applications

Cited 70 time in webofscience Cited 68 time in scopus
  • Hit : 247
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorShin, Donghwako
dc.contributor.authorKim, Younghyunko
dc.contributor.authorWang, Yanzhiko
dc.contributor.authorChang, Naehyuckko
dc.contributor.authorPedram, Massoudko
dc.date.accessioned2015-11-20T10:23:41Z-
dc.date.available2015-11-20T10:23:41Z-
dc.date.created2014-07-09-
dc.date.created2014-07-09-
dc.date.created2014-07-09-
dc.date.created2014-07-09-
dc.date.created2014-07-09-
dc.date.issued2012-05-
dc.identifier.citationJOURNAL OF POWER SOURCES, v.205, pp.516 - 524-
dc.identifier.issn0378-7753-
dc.identifier.urihttp://hdl.handle.net/10203/201385-
dc.description.abstractModern batteries provide high discharging efficiency, but the rate capacity effect in these batteries drastically decreases the discharging efficiency as the load current increases. Electric double layer capacitors, or simply supercapacitors, have extremely low internal resistance, and a battery-supercapacitor hybrid may mitigate the rate capacity effect for high pulsed discharging current. However, a hybrid architecture comprising a simple parallel connection does not perform well when the supercapacitor capacity is small, which is a typical situation because of the low energy density and high cost of supercapacitors. This paper presents a new battery-supercapacitor hybrid system that employs a constant-current regulator isolating the battery from supercapacitor to improve the end-to-end efficiency from the battery to the load while accounting for the rate capacity effect for the Li-ion batteries and the conversion efficiency data for the regulator. We optimize the system in terms of a delivered energy density which is an end-to-end energy delivery per unit volume of the energy storage elements. We evaluate the delivered energy density with the aid of detailed simulations and develop a design space exploration algorithm based on the characteristics of the proposed architecture. We achieve 7.7% improvement in deliverable energy density over conventional parallel connection of battery and supercapacitor.-
dc.languageEnglish-
dc.publisherELSEVIER SCIENCE BV-
dc.titleConstant-current regulator-based battery-supercapacitor hybrid architecture for high-rate pulsed load applications-
dc.typeArticle-
dc.identifier.wosid000301828300072-
dc.identifier.scopusid2-s2.0-84857372630-
dc.type.rimsART-
dc.citation.volume205-
dc.citation.beginningpage516-
dc.citation.endingpage524-
dc.citation.publicationnameJOURNAL OF POWER SOURCES-
dc.identifier.doi10.1016/j.jpowsour.2011.12.043-
dc.contributor.localauthorChang, Naehyuck-
dc.contributor.nonIdAuthorShin, Donghwa-
dc.contributor.nonIdAuthorKim, Younghyun-
dc.contributor.nonIdAuthorWang, Yanzhi-
dc.contributor.nonIdAuthorPedram, Massoud-
dc.type.journalArticleArticle-
dc.subject.keywordAuthorLi-ion battery-
dc.subject.keywordAuthorSupercapacitor-
dc.subject.keywordAuthorRate-capacity effect-
dc.subject.keywordAuthorConstant-current regulator-
Appears in Collection
EE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 70 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0