Development of highly transparent Pd-coated Ag nanowire electrode for display and catalysis applications

Cited 15 time in webofscience Cited 15 time in scopus
  • Hit : 315
  • Download : 0
Ag nanowire transparent electrode has excellent transmittance (90%) and sheet resistance (20 Omega/sq), yet there are slight drawbacks such as optical haze and chemical instability against aerial oxidation. Chemical stability of Ag nanowires needs to be improved in order for it to be suitable for electrode applications. In our recent article, we demonstrated that coating Ag nanowires with a thin layer of Au through galvanic exchange reactions enhances the chemical stability of Ag nanowire films highly and also helps to obtain lower haze. In this study, coating of a thin Pd layer has been applied successfully onto the surface of Ag nanowires. A mild Pd complex oxidant [Pd(en)(2)](NO3)(2) was prepared in order to oxidize Ag atoms partially on the surface via galvanic displacement. The mild galvanic exchange allowed for a thin layer (1-2 nm) of Pd coating on the Ag nanowires with minimal truncation of the nanowire, where the average length and the diameter were 12.5 mu m and 59 nm, respectively. The Pd-coated Ag nanowires were suspended in methanol and then electrostatically sprayed on flexible polycarbonate substrates. It has been revealed that average total transmittance remain around 95% within visible spectrum region (400-800 nm) whereas sheet resistance rises up to 175 Omega/sq. To the best of our knowledge, for the first time in the literature, Pd coating was employed on Ag nanowires in order to design transparent electrodes for high transparency and strong chemical resistivity against nanowire oxidation. The current Pd-coated Ag nanowires may render an excellent catalyst system for fuel cell applications, as well as in organic synthesis with relatively low costs since our approach enables the fabrication of these nanowires with a very thin layer of Pd. We believe that mesh form of Pd-coated Ag nanowires will coin a new catalyst concept to the related areas since their sheet conductivity is high enough, and also little amount of Pd displays a large surface area as thin layers. (C) 2015 Elsevier B.V. All rights reserved.
Publisher
ELSEVIER SCIENCE BV
Issue Date
2015-09
Language
English
Article Type
Article; Proceedings Paper
Citation

Applied Surface Science, v.350, pp.79 - 86

ISSN
0169-4332
DOI
10.1016/j.apsusc.2015.04.017
URI
http://hdl.handle.net/10203/200439
Appears in Collection
EEW-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 15 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0