Titania-Encapsulated Hybrid Nanocatalysts as Active and Thermally Stable Model Catalysts

Cited 3 time in webofscience Cited 3 time in scopus
  • Hit : 541
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorNaik, Brundabanako
dc.contributor.authorMoon, Song Yiko
dc.contributor.authorOh, Sunyoungko
dc.contributor.authorJung, Chan Hoko
dc.contributor.authorPark, JeongYoungko
dc.date.accessioned2015-04-15T02:09:45Z-
dc.date.available2015-04-15T02:09:45Z-
dc.date.created2015-04-13-
dc.date.created2015-04-13-
dc.date.issued2015-03-
dc.identifier.citationCATALYSIS LETTERS, v.145, no.3, pp.930 - 938-
dc.identifier.issn1011-372X-
dc.identifier.urihttp://hdl.handle.net/10203/196088-
dc.description.abstractMetal-oxide hybrid nanocatalysts with ultrathin oxide encapsulation can be a new platform to test the metal-support interaction. Metal nanoparticles (Ru, Rh, or Pt) capped with polymer/citrate were deposited on functionalized SiO2 and then an ultrathin layer of TiO2 was selectively coated on the SiO2 surface to prevent sintering and to provide high thermal stability while maximizing the metal-oxide interface for higher catalytic activity. Transmission electron microscopy studies confirmed that 2.1-2.3 nm metal nanoparticles were well dispersed and distributed throughout the surface of the 25 nm SiO2 nanoparticles, and that a 2 nm ultrathin TiO2 layer existed on the surface of the particles. The metal nanoparticles were still well exposed to the outer surface, thus allowing for surface characterization and catalytic activity. Even after calcination at 600 A degrees C, the structure and morphology of the hybrid nanocatalysts remained intact, confirming high thermal stability. The catalytic activities of the hybrid nanocatalysts with ultrathin oxide encapsulation (SiO2/M/TiO2, M = Pt, Rh, or Ru) were evaluated using the CO oxidation reaction. Hybrid nanocatalysts encapsulated by the ultrathin oxide layer allowed us to obtain high thermal stability and better exposure of the metal active sites for a strong metal-support interaction between the metals and the ultrathin TiO2.-
dc.languageEnglish-
dc.publisherSPRINGER-
dc.subjectCO OXIDATION-
dc.subjectELECTRON FLOW-
dc.subjectNANOPARTICLES-
dc.subjectSIZE-
dc.subjectSELECTIVITY-
dc.subjectTIO2-
dc.subjectADSORPTION-
dc.subjectHYDROGEN-
dc.subjectPT/TIO2-
dc.subjectSBA-15-
dc.titleTitania-Encapsulated Hybrid Nanocatalysts as Active and Thermally Stable Model Catalysts-
dc.typeArticle-
dc.identifier.wosid000350677000023-
dc.identifier.scopusid2-s2.0-84938295210-
dc.type.rimsART-
dc.citation.volume145-
dc.citation.issue3-
dc.citation.beginningpage930-
dc.citation.endingpage938-
dc.citation.publicationnameCATALYSIS LETTERS-
dc.identifier.doi10.1007/s10562-014-1465-4-
dc.contributor.localauthorPark, JeongYoung-
dc.contributor.nonIdAuthorNaik, Brundabana-
dc.contributor.nonIdAuthorOh, Sunyoung-
dc.type.journalArticleArticle-
dc.subject.keywordAuthorHybrid nanocatalyst-
dc.subject.keywordAuthorMetal oxide-
dc.subject.keywordAuthorCO oxidation-
dc.subject.keywordAuthorEncapsulation-
dc.subject.keywordPlusCO OXIDATION-
dc.subject.keywordPlusELECTRON FLOW-
dc.subject.keywordPlusNANOPARTICLES-
dc.subject.keywordPlusSIZE-
dc.subject.keywordPlusSELECTIVITY-
dc.subject.keywordPlusTIO2-
dc.subject.keywordPlusADSORPTION-
dc.subject.keywordPlusHYDROGEN-
dc.subject.keywordPlusPT/TIO2-
dc.subject.keywordPlusSBA-15-
Appears in Collection
EEW-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 3 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0