Investigation of Inter-Slice Magnetization Transfer Effects as a New Method for MTR Imaging of the Human Brain

Cited 9 time in webofscience Cited 8 time in scopus
  • Hit : 622
  • Download : 94
We present a new method for magnetization transfer (MT) ratio imaging in the brain that requires no separate saturation pulse. Interslice MT effects that are inherent to multi-slice balanced steady-state free precession (bSSFP) imaging were controlled via an interslice delay time to generate MT-weighted (0 s delay) and reference images (5-8 s delay) for MT ratio (MTR) imaging of the brain. The effects of varying flip angle and phase encoding (PE) order were investigated experimentally in normal, healthy subjects. Values of up to similar to 50% and similar to 40% were observed for white and gray matter MTR. Centric PE showed larger MTR, higher SNR, and better contrast between white and gray matter than linear PE. Simulations of a two-pool model of MT agreed well with in vivo MTR values. Simulations were also used to investigate the effects of varying acquisition parameters, and the effects of varying flip angle, PE steps, and interslice delay are discussed. Lastly, we demonstrated reduced banding with a non-balanced SSFP-FID sequence and showed preliminary results of interslice MTR imaging of meningioma.
Publisher
PUBLIC LIBRARY SCIENCE
Issue Date
2015-02
Language
English
Article Type
Article
Citation

PLOS ONE, v.10, no.2, pp.e0117101

ISSN
1932-6203
DOI
10.1371/journal.pone.0117101
URI
http://hdl.handle.net/10203/195558
Appears in Collection
BiS-Journal Papers(저널논문)
Files in This Item
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 9 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0