Crystal structure of UbiX, an aromatic acid decarboxylase from the psychrophilic bacterium Colwellia psychrerythraea that undergoes FMN-induced conformational changes

Cited 12 time in webofscience Cited 13 time in scopus
  • Hit : 447
  • Download : 454
The ubiX gene of Colwellia psychrerythraea strain 34H encodes a 3-octaprenyl-4-hydroxybenzoate carboxylase (CpsUbiX, UniProtKB code: Q489U8) that is involved in the third step of the ubiquinone biosynthesis pathway and harbors a flavin mononucleotide (FMN) as a potential cofactor. Here, we report the crystal structures of two forms of CpsUbiX: an FMN-bound wild type form and an FMN-unbound V47S mutant form. CpsUbiX is a dodecameric enzyme, and each monomer possesses a typical Rossmann-fold structure. The FMN-binding domain of UbiX is composed of three neighboring subunits. The highly conserved Gly15, Ser41, Val47, and Tyr171 residues play important roles in FMN binding. Structural comparison of the FMN-bound wild type form with the FMN-free form reveals a significant conformational difference in the C-terminal loop region (comprising residues 170-176 and 195-206). Subsequent computational modeling and liposome binding assay both suggest that the conformational flexibility observed in the C-terminal loops plays an important role in substrate and lipid bindings. The crystal structures presented in this work provide structural framework and insights into the catalytic mechanism of CpsUbiX.
Publisher
NATURE PUBLISHING GROUP
Issue Date
2015-02
Language
English
Article Type
Article
Keywords

UBIQUINONE BIOSYNTHESIS; MOLECULAR-DYNAMICS; ESCHERICHIA-COLI; PROTEIN; PROGRAM; MODEL

Citation

SCIENTIFIC REPORTS, v.5

ISSN
2045-2322
DOI
10.1038/srep08196
URI
http://hdl.handle.net/10203/195522
Appears in Collection
MSE-Journal Papers(저널논문)
Files in This Item
000348703200007.pdf(2.87 MB)Download
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 12 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0