Characteristics of weld pool behavior in laser welding with various power inputs

Cited 24 time in webofscience Cited 23 time in scopus
  • Hit : 397
  • Download : 0
This paper investigates the numerical simulations of multi-kilowatt disk laser and fiber laser welding, ranging from 6 to 18 kW to study the behavior of molten pool in 20-mm-thick steel plate by using Volume-Of-Fluid (VOF) method and several mathematical models like Gaussian heat source, recoil pressure, Marangoni flow, buoyancy force, and additional shear stress and heat source due to the metallic vapor. Vortex flow pattern is observed for higher laser power except for 6-kW case, and the higher the laser power, the bigger the vortex flow pattern. Welding speed has an influence on molten pool in terms of depth of penetration and size of molten pool, but overall shape of molten pool remains the same. The reasons for the vortex flow pattern in high-power laser welding are the absorption of more energy at the bottom of keyhole, which promotes more liquid metal at the bottom, while for lower power with lower speed, the melt formation is more uniform in the thickness direction and most of the molten metal in the lower part of keyhole reaches the top of molten pool, and consequently, no vortex flow pattern is observed in the keyhole bottom.
Publisher
INT INST WELDING
Issue Date
2014-05
Language
English
Article Type
Article
Citation

WELDING IN THE WORLD, v.58, no.3, pp.269 - 277

ISSN
0043-2288
DOI
10.1007/s40194-014-0112-4
URI
http://hdl.handle.net/10203/195096
Appears in Collection
ME-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 24 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0