ENERGETIC VARIATIONAL APPROACH IN COMPLEX FLUIDS: MAXIMUM DISSIPATION PRINCIPLE

Cited 85 time in webofscience Cited 80 time in scopus
  • Hit : 1251
  • Download : 1985
DC FieldValueLanguage
dc.contributor.authorHyon, Yunkyongko
dc.contributor.authorKwak, Do Youngko
dc.contributor.authorLiu, Chunko
dc.date.accessioned2010-09-08T01:50:32Z-
dc.date.available2010-09-08T01:50:32Z-
dc.date.created2012-02-06-
dc.date.created2012-02-06-
dc.date.created2012-02-06-
dc.date.issued2010-04-
dc.identifier.citationDISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, v.26, no.4, pp.1291 - 1304-
dc.identifier.issn1078-0947-
dc.identifier.urihttp://hdl.handle.net/10203/19315-
dc.description.abstractWe discuss the general energetic variational approaches for hydrodynamic systems of complex fluids. In these energetic variational approaches, the least action principle (LAP) with action functional gives the Hamiltonian parts (conservative force) of the hydrodynamic systems, and the maximum/minimum dissipation principle (MDP), i.e., Onsager's principle, gives the dissipative parts (dissipative force) of the systems. When we combine the two systems derived from the two different principles, we obtain a whole coupled nonlinear system of equations satisfying the dissipative energy law. We will discuss the important roles of MDP in designing numerical method for computations of hydrodynamic systems in complex fluids. We will reformulate the dissipation in energy equation interms of a rate in time by using an appropriate evolution equations, then the MDP is employed in the reformulated dissipation to obtain the dissipative force for the hydrodynamic systems. The systems are consistent with the Hamiltonian parts which are derived from LAP. This procedure allows the usage of lower order element (a continuous C(0) finite element) in numerical method to solve the system rather than high order elements, and at the same time preserves the dissipative energy law. We also verify this method through some numerical experiments in simulating the free interface motion in the mixture of two different fluids.-
dc.languageEnglish-
dc.publisherAMER INST MATHEMATICAL SCIENCES-
dc.titleENERGETIC VARIATIONAL APPROACH IN COMPLEX FLUIDS: MAXIMUM DISSIPATION PRINCIPLE-
dc.typeArticle-
dc.identifier.wosid000272775400010-
dc.identifier.scopusid2-s2.0-77950226252-
dc.type.rimsART-
dc.citation.volume26-
dc.citation.issue4-
dc.citation.beginningpage1291-
dc.citation.endingpage1304-
dc.citation.publicationnameDISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-
dc.identifier.doi10.3934/dcds.2010.26.1291-
dc.embargo.liftdate9999-12-31-
dc.embargo.terms9999-12-31-
dc.contributor.localauthorKwak, Do Young-
dc.contributor.nonIdAuthorHyon, Yunkyong-
dc.contributor.nonIdAuthorLiu, Chun-
dc.type.journalArticleArticle; Proceedings Paper-
dc.subject.keywordAuthorEnergetic variational approach-
dc.subject.keywordAuthordissipation energy law-
dc.subject.keywordAuthorleast action principle-
dc.subject.keywordAuthormaximum dissipation principle-
dc.subject.keywordAuthorNavier-Stokes equation-
dc.subject.keywordAuthorphase field equations-
dc.subject.keywordPlusLIQUID-CRYSTAL FLOWS-
dc.subject.keywordPlusFINITE-ELEMENT SCHEME-
dc.subject.keywordPlusIRREVERSIBLE-PROCESSES-
dc.subject.keywordPlusRECIPROCAL RELATIONS-
dc.subject.keywordPlusVISCOELASTIC FLUIDS-
dc.subject.keywordPlusDIFFUSION-PROBLEMS-
dc.subject.keywordPlusAPPROXIMATION-
dc.subject.keywordPlusSIMULATIONS-
dc.subject.keywordPlusDYNAMICS-
Appears in Collection
MA-Journal Papers(저널논문)
Files in This Item
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 85 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0