Reprogramming of mouse somatic cells into pluripotent stem-like cells using a combination of small molecules

Cited 30 time in webofscience Cited 30 time in scopus
  • Hit : 386
  • Download : 0
Somatic cells can be reprogrammed to generate induced pluripotent stem cells (iPSCs) by overexpression of four transcription factors, Oct4, Klf4, Sox2, and c-Myc. However, exogenous expression of pluripotency factors raised concerns for clinical applications. Here, we show that iPS-like cells (iPSLCs) were generated from mouse somatic cells in two steps with small molecule compounds. In the first step, stable intermediate cells were generated from mouse astrocytes by Bmi1. These cells called induced epiblast stem cell (EpiSC)-like cells (iEpiSCLCs) are similar to EpiSCs in terms of expression of specific markers, epigenetic state, and ability to differentiate into three germ layers. In the second step, treatment with MEK/ERK and GSK3 pathway inhibitors in the presence of leukemia inhibitory factor resulted in conversion of iEpiSCLCs into iPSLCs that were similar to mESCs, suggesting that Bmi1 is sufficient to reprogram astrocytes to partially reprogrammed pluripotency. Next, Bmi1 function was replaced with Shh activators (oxysterol and purmorphamine), which demonstrating that combinations of small molecules can compensate for reprogramming factors and are sufficient to directly reprogram mouse somatic cells into iPSLCs. The chemically induced pluripotent stem cell-like cells (ciPSLCs) showed similar gene expression profiles, epigenetic status, and differentiation potentials to mESCs.
Publisher
ELSEVIER SCI LTD
Issue Date
2014-08
Language
English
Article Type
Article
Keywords

GROUND-STATE PLURIPOTENCY; FIBROBLASTS; DIFFERENTIATION; GENERATION; OCT4; BMI1; ASTROCYTES; CONVERSION; INDUCTION; PATHWAY

Citation

BIOMATERIALS, v.35, no.26, pp.7336 - 7345

ISSN
0142-9612
DOI
10.1016/j.biomaterials.2014.05.015
URI
http://hdl.handle.net/10203/190038
Appears in Collection
MSE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 30 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0