Mechanical characteristics and strengthening effectiveness of random-chopped FRP composites containing air voids

Cited 26 time in webofscience Cited 28 time in scopus
  • Hit : 432
  • Download : 11
DC FieldValueLanguage
dc.contributor.authorYang, B. J.ko
dc.contributor.authorHa, S. K.ko
dc.contributor.authorPyo, S. H.ko
dc.contributor.authorLee, H. K.ko
dc.date.accessioned2014-09-01T06:41:54Z-
dc.date.available2014-09-01T06:41:54Z-
dc.date.created2014-06-23-
dc.date.created2014-06-23-
dc.date.created2014-06-23-
dc.date.issued2014-06-
dc.identifier.citationCOMPOSITES PART B-ENGINEERING, v.62, pp.159 - 166-
dc.identifier.issn1359-8368-
dc.identifier.urihttp://hdl.handle.net/10203/189136-
dc.description.abstractIn random-chopped fiber-reinforced polymer (FRP) composites used as a retrofit material, a high volume fraction of voids is inevitable due to the manufacturing characteristics. In this paper, the mechanical characteristics and strengthening effectiveness of random-chopped FRP composites containing air porosity are investigated through experiments and numerical analysis. Coupon-shaped specimens with various material compositions were manufactured to examine the uniaxial tensile performance, and the air voids in the composites were measured by a microscope camera. In order to predict the overall performance of the composites, a micromechanical formulation that accounts for porosity was newly developed. The derived model was incorporated into a finite element (FE) code, and the model parameters were estimated by comparing uniaxial tensile test results for various systems of random-chopped FRP composites. In addition, concrete beams strengthened with the composites were produced to evaluate their load-carrying capacity. The FE predictions of the composite structures were then compared with experimental data to verify the predictive capability of the proposed numerical framework.-
dc.languageEnglish-
dc.publisherELSEVIER SCI LTD-
dc.titleMechanical characteristics and strengthening effectiveness of random-chopped FRP composites containing air voids-
dc.typeArticle-
dc.identifier.wosid000336187200018-
dc.identifier.scopusid2-s2.0-84897894811-
dc.type.rimsART-
dc.citation.volume62-
dc.citation.beginningpage159-
dc.citation.endingpage166-
dc.citation.publicationnameCOMPOSITES PART B-ENGINEERING-
dc.identifier.doi10.1016/j.compositesb.2014.02.015-
dc.embargo.liftdate9999-12-31-
dc.embargo.terms9999-12-31-
dc.contributor.localauthorLee, H. K.-
dc.contributor.nonIdAuthorYang, B. J.-
dc.contributor.nonIdAuthorHa, S. K.-
dc.contributor.nonIdAuthorPyo, S. H.-
dc.type.journalArticleArticle-
dc.subject.keywordAuthorPolymer-matrix composites (PMCs)-
dc.subject.keywordAuthorPorosity-
dc.subject.keywordAuthorNumerical analysis-
dc.subject.keywordAuthorMechanical testing-
dc.subject.keywordPlusEFFECTIVE ELASTIC BEHAVIOR-
dc.subject.keywordPlusDUCTILE MATRIX COMPOSITES-
dc.subject.keywordPlusPARTICULATE COMPOSITES-
dc.subject.keywordPlusDAMAGE MODEL-
dc.subject.keywordPlusSPRAYED FRP-
dc.subject.keywordPlusPOLYMERIC COMPOSITES-
dc.subject.keywordPlusWEAKENED INTERFACE-
dc.subject.keywordPlusFIBER COMPOSITES-
dc.subject.keywordPlusPERFORMANCE-
dc.subject.keywordPlusREPAIR-
Appears in Collection
CE-Journal Papers(저널논문)
Files in This Item
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 26 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0