Investigation of Sn Whisker Growth in Electroplated Sn and Sn-Ag as a Function of Plating Variables and Storage Conditions

Cited 8 time in webofscience Cited 8 time in scopus
  • Hit : 468
  • Download : 38
Sn whiskers are becoming a serious reliability issue in Pb-free electronic packaging applications. Among the numerous Sn whisker mitigation strategies, minor alloying additions to Sn have been proven effective. In this study, several commercial Sn and Sn-Ag baths of low-whisker formulations are evaluated to develop optimum mitigation strategies for electroplated Sn and Sn-Ag. The effects of plating variables and storage conditions, including plating thickness and current density, on Sn whisker growth are investigated for matte Sn, matte Sn-Ag, and bright Sn-Ag electroplated on a Si substrate. Two different storage conditions are applied: an ambient condition (30A degrees C, dry air) and a high-temperature/high-humidity condition (55A degrees C, 85% relative humidity). Scanning electron microscopy is employed to record the Sn whisker growth history of each sample up to 4000 h. Transmission electron microscopy, x-ray diffraction, and focused ion beam techniques are used to understand the microstructure, the formation of intermetallic compounds (IMCs), oxidation, the Sn whisker growth mechanism, and other features. In this study, it is found that whiskers are observed only under ambient conditions for both thin and thick samples regardless of the current density variations for matte Sn. However, whiskers are not observed on Sn-Ag-plated surfaces due to the equiaxed grains and fine Ag3Sn IMCs located at grain boundaries. In addition, Sn whiskers can be suppressed under the high-temperature/high-humidity conditions due to the random growth of IMCs and the formation of thick oxide layers.
Publisher
SPRINGER
Issue Date
2014-01
Language
English
Article Type
Article
Keywords

SURFACE-TREATMENT; TIN; MICROSTRUCTURE; BEHAVIOR; FINISHES; FILMS; CU

Citation

JOURNAL OF ELECTRONIC MATERIALS, v.43, no.1, pp.259 - 269

ISSN
0361-5235
DOI
10.1007/s11664-013-2800-z
URI
http://hdl.handle.net/10203/188687
Appears in Collection
MS-Journal Papers(저널논문)
Files in This Item
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 8 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0