Magnetic Microrheology of Block Copolymer Solutions

Cited 9 time in webofscience Cited 10 time in scopus
  • Hit : 634
  • Download : 0
The viscosity of poly(styrene)-b-poly(lactide) [PS-b-PLA] solutions in a neutral solvent was characterized by magnetic microrheology. The effect of polymer concentration on the viscosity of the block polymer solutions was compared with that of the PS and PLA homopolymers in the same solvent. The viscosity of PS-b-PLA solution, unlike the homopolymer solutions, showed a steep increase over a narrow concentration range. The steep rise was concomitant with microphase separation into an ordered cylindrical microstructure as determined by small-angle X-ray scattering. Hence microrheology proved effective as a means of characterizing the order-disorder transition concentration. During an in situ drying experiment, changes in local viscosity through the depth of a block copolymer solution were characterized as a function of drying time. Early in the drying process, the viscosity rose steadily and was uniform through the depth, a result consistent with steadily increasing and uniform polymer concentration. However, later in the drying process as the overall polymer concentration approached that required for microphase separation, the viscosity of the polymer solution near the free surface became an order of magnitude higher than that near the bottom of the container. The zone of high viscosity moved downward as drying proceeded, consistent with a microphase separation front.
Publisher
AMER CHEMICAL SOC
Issue Date
2013-11
Language
English
Article Type
Article
Citation

ACS APPLIED MATERIALS INTERFACES, v.5, no.22, pp.11877 - 11883

ISSN
1944-8244
DOI
10.1021/am403569f
URI
http://hdl.handle.net/10203/187359
Appears in Collection
NT-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 9 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0