Analysis of energetic features of the loaded walking subjected to the trunk flexion change허리각도 변화에 따른 하중 하 보행의 에너지 측면에서의 분석

Cited 0 time in webofscience Cited 0 time in scopus
  • Hit : 724
  • Download : 0
DC FieldValueLanguage
dc.contributor.advisorKim, Soo-Hyun-
dc.contributor.advisor김수현-
dc.contributor.advisorPark, Su-Kyung-
dc.contributor.advisor박수경-
dc.contributor.authorPark, Ji-il-
dc.contributor.author박지일-
dc.date.accessioned2013-09-12T02:36:51Z-
dc.date.available2013-09-12T02:36:51Z-
dc.date.issued2013-
dc.identifier.urihttp://library.kaist.ac.kr/search/detail/view.do?bibCtrlNo=514831&flag=dissertation-
dc.identifier.urihttp://hdl.handle.net/10203/181732-
dc.description학위논문(석사) - 한국과학기술원 : 기계공학전공, 2013.2, [ viii, 69 p. ]-
dc.description.abstractThe purpose of this research is to analyze the energetic features of loaded gait subjected to the trunk flexion change. The feature of gait is analyzed by comparing the impulse, momentums and mechanical works between normal and loaded gait. For analysis, human gait is modeled as a simple mechanical system. Typical simple mechanical system is the simplest walking model like inverted pendulum. Merit of simplest model is able to predict energetic features of human gait like impulse, momentum and mechanical work. However, this model has a defect due to the assumption and simplification. It is because this model has in-stantaneous collision by simultaneous push-off and heel-strike impulses, so gravitational effect was ignored during a step-to-step transition. To work out this problem, Yeom proposed finite collision model for the double support phase of human walking. This model can analyze the gravitational effect on the center-of-gravity during the double support phase. Based on this model, energetic feature of loaded gait subjected to the trunk flexion change will be analyzed. To analyze the human gait, experiment was performed with 7 subjects comprised of trained active-duty sol-diers 5 and graduate students discharged from active service 2. Through this, we measured the ground reaction forces and kinematic data and calculated the collision impulses and mechanical work. The result shows mechanical work done during single support phase is always close to zero to minimize total net work. In other word, it means that human walk efficiently to minimize total net works in case of loaded gait. Furthermore, energy influx for walking occurs at double support phase. Therefore, it can be seen that most of the process is almost performed in the double support phase.eng
dc.languageeng-
dc.publisher한국과학기술원-
dc.subjectLoaded gait-
dc.subjecttrunk flexion-
dc.subjectmomentum-
dc.subjectgait analysis-
dc.subject하중하 보행-
dc.subject허리각도-
dc.subject운동량-
dc.subject충격량-
dc.subject보행 석-
dc.subjectimpulse-
dc.titleAnalysis of energetic features of the loaded walking subjected to the trunk flexion change-
dc.title.alternative허리각도 변화에 따른 하중 하 보행의 에너지 측면에서의 분석-
dc.typeThesis(Master)-
dc.identifier.CNRN514831/325007 -
dc.description.department한국과학기술원 : 기계공학전공, -
dc.identifier.uid020113241-
dc.contributor.localauthorKim, Soo-Hyun-
dc.contributor.localauthor김수현-
dc.contributor.localauthorPark, Su-Kyung-
dc.contributor.localauthor박수경-
Appears in Collection
ME-Theses_Master(석사논문)
Files in This Item
There are no files associated with this item.

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0