Hybrid functional versus quasiparticle calculations for the Schottky barrier and effective work function at TiN/HfO2 interface

Cited 17 time in webofscience Cited 13 time in scopus
  • Hit : 474
  • Download : 1095
We investigate the Schottky barrier and effective work function (EWF) at TiN/HfO2 interface through density functional calculations. For different interfaces that consist of either Ti-O or N-Hf interface bonds, the intrinsic metal-induced gap states are nearly independent of the interface structure, with similar decay lengths into the oxide. Due to the weak Fermi-level pinning, the EWF is more sensitive to the extrinsic effect of interface bonding. As N-rich interface bonds are replaced by O-rich bonds, the EWF decreases by up to 0.36 eV, which is attributed to the formation of opposing interface dipoles. To improve the band gap and EWF, we perform both hybrid functional and quasiparticle (QP) calculations. In the GW(0) approximation, in which the Green's function is self-consistently calculated by updating only QP energies and the full frequency-dependent dielectric function is used, the agreement of the EWF with experiment is greatly improved, while QP calculations at the G(0)W(0) level or using the plasmon-pole dielectric function tend to overestimate the EWF. In the self-consistent GW approach, in which both QP energies and wave functions are updated in iterations, the band gap is overestimated, resulting in the lower EWF. On the other hand, the EWF is severely underestimated with the hybrid functional because of the larger shift of the valence band edge level of HfO2. DOI: 10.1103/PhysRevB.87.075325
Publisher
AMER PHYSICAL SOC
Issue Date
2013-02
Language
English
Article Type
Article
Keywords

FIELD-EFFECT TRANSISTORS; BAND OFFSETS; GAP STATES; HFO2; APPROXIMATION; INSULATORS; ALIGNMENT; DEVICES; HEIGHTS

Citation

PHYSICAL REVIEW B, v.87, no.7, pp.075325

ISSN
1098-0121
DOI
10.1103/PhysRevB.87.075325
URI
http://hdl.handle.net/10203/174564
Appears in Collection
PH-Journal Papers(저널논문)
Files in This Item
000315482500007.pdf(2.14 MB)Download
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 17 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0