A point model for the design of a sulfur trioxide decomposer for the SI cycle and comparison with a CFD model

Cited 4 time in webofscience Cited 4 time in scopus
  • Hit : 503
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorLee, You Hoko
dc.contributor.authorLee, JeongIkko
dc.contributor.authorNo, Hee Cheonko
dc.date.accessioned2013-08-08T05:15:54Z-
dc.date.available2013-08-08T05:15:54Z-
dc.date.created2012-02-06-
dc.date.created2012-02-06-
dc.date.issued2010-06-
dc.identifier.citationINTERNATIONAL JOURNAL OF HYDROGEN ENERGY, v.35, no.11, pp.5210 - 5219-
dc.identifier.issn0360-3199-
dc.identifier.urihttp://hdl.handle.net/10203/174441-
dc.description.abstractOperating under the harsh environment with the significant energy consumption, the sulfur trioxide decomposer is one of the most important components, yet challenging tasks for the designers of an efficient SI cycle. We developed a point model to provide important guidelines for designers of a sulfur trioxide decomposer through estimating outlet physical quantities, such as outlet decomposition ratio, outlet temperature, and pressure drop of a sulfur trioxide decomposer. Then, results of the point model were compared to independent predictions obtained using a CFD model over a wide range of conditions with good agreement. The model indicates that decomposition ratio is a function of the representative non-dimensional design parameter and inlet flow composition. As inlet flow composition rarely affects outlet decomposition ratio, we found out that outlet decomposition ratio can be approximated solely as a function of the non-dimensional design parameter. We demonstrated that the model can provide general guidelines for designers of a sulfur trioxide decomposer to achieve a target decomposition ratio with an economical design. It turns out that an increase in operating pressure and catalyst surface area leads to an increase in outlet decomposition ratio while the reverse is true for an increase in mass flow rate. (C) 2010 Professor T. Nejat Veziroglu. Published by Elsevier Ltd. All rights reserved.-
dc.languageEnglish-
dc.publisherPERGAMON-ELSEVIER SCIENCE LTD-
dc.subjectHYDROGEN-PRODUCTION-
dc.subjectCATALYTIC DECOMPOSITION-
dc.subjectTHERMAL-DECOMPOSITION-
dc.subjectCHEMICAL DECOMPOSER-
dc.subjectHEAT-EXCHANGER-
dc.subjectACID-
dc.subjectSO2-
dc.titleA point model for the design of a sulfur trioxide decomposer for the SI cycle and comparison with a CFD model-
dc.typeArticle-
dc.identifier.wosid000278967900006-
dc.identifier.scopusid2-s2.0-77955296105-
dc.type.rimsART-
dc.citation.volume35-
dc.citation.issue11-
dc.citation.beginningpage5210-
dc.citation.endingpage5219-
dc.citation.publicationnameINTERNATIONAL JOURNAL OF HYDROGEN ENERGY-
dc.identifier.doi10.1016/j.ijhydene.2010.02.088-
dc.contributor.localauthorLee, JeongIk-
dc.contributor.localauthorNo, Hee Cheon-
dc.type.journalArticleArticle-
dc.subject.keywordAuthorSI cycle-
dc.subject.keywordAuthorSO(3) decomposer-
dc.subject.keywordAuthorPoint model-
dc.subject.keywordAuthorCFD comparison-
dc.subject.keywordAuthorHydrogen production-
dc.subject.keywordAuthorDesign parameter-
dc.subject.keywordPlusHYDROGEN-PRODUCTION-
dc.subject.keywordPlusCATALYTIC DECOMPOSITION-
dc.subject.keywordPlusTHERMAL-DECOMPOSITION-
dc.subject.keywordPlusCHEMICAL DECOMPOSER-
dc.subject.keywordPlusHEAT-EXCHANGER-
dc.subject.keywordPlusACID-
dc.subject.keywordPlusSO2-
Appears in Collection
NE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 4 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0