Effect of wall heating on turbulent boundary layers with temperature-dependent viscosity

Cited 94 time in webofscience Cited 86 time in scopus
  • Hit : 703
  • Download : 1269
DC FieldValueLanguage
dc.contributor.authorLee, Jinko
dc.contributor.authorJung, Seo Yoonko
dc.contributor.authorSung, Hyung Jinko
dc.contributor.authorZaki, Tamer A.ko
dc.date.accessioned2013-08-08T01:49:30Z-
dc.date.available2013-08-08T01:49:30Z-
dc.date.created2013-07-22-
dc.date.created2013-07-22-
dc.date.issued2013-07-
dc.identifier.citationJOURNAL OF FLUID MECHANICS, v.726, pp.196 - 225-
dc.identifier.issn0022-1120-
dc.identifier.urihttp://hdl.handle.net/10203/174103-
dc.description.abstractDirect numerical simulations (DNS) of turbulent boundary layers over isothermally heated walls were performed, and the effect of viscosity stratification on the turbulence statistics and skin friction were investigated. An empirical relation for temperature-dependent viscosity for water was adopted. Based on the free-stream temperature (30 degrees C), two wall temperatures (70 degrees C and 99 degrees C) were selected. In the heated flows, the turbulence energy diminishes in the buffer layer, but increases near the wall. The reduction in turbulence kinetic energy in the buffer layer is accompanied by smaller levels of Reynolds shear stresses and, hence, weaker turbulence production. The enhanced turbulence energy near the wall is attributed to enhanced transfer of energy via additional diffusion-like terms due to the viscosity stratification. Despite the lower fluid viscosity near the wall, dissipation is also increased owing to the augmented near-wall fine-scale motion. Wall heating results in reduction in the skin-friction coefficient by up to 26 %. An evaluation of the different contributions to the skin friction demonstrates that drag reduction is primarily due to the changes in the Reynolds shear stresses across the boundary layer. Quadrant and octant analyses showed that ejections (Q2) and sweeps (Q4) are significantly reduced, a result further supported by an examination of outer vortical structures from linear stochastic estimation of the ejection events and spanwise vortices.-
dc.languageEnglish-
dc.publisherCAMBRIDGE UNIV PRESS-
dc.subjectDIRECT NUMERICAL-SIMULATION-
dc.subjectLOW-REYNOLDS-NUMBER-
dc.subjectFINE-SCALE MOTIONS-
dc.subjectCHANNEL FLOW-
dc.subjectDRAG REDUCTION-
dc.subjectSKIN-FRICTION-
dc.subjectPRESSURE-GRADIENTS-
dc.subjectLINEAR-STABILITY-
dc.subjectTRANSITION-
dc.subjectVORTEX-
dc.titleEffect of wall heating on turbulent boundary layers with temperature-dependent viscosity-
dc.typeArticle-
dc.identifier.wosid000319736300009-
dc.identifier.scopusid2-s2.0-84880220195-
dc.type.rimsART-
dc.citation.volume726-
dc.citation.beginningpage196-
dc.citation.endingpage225-
dc.citation.publicationnameJOURNAL OF FLUID MECHANICS-
dc.identifier.doi10.1017/jfm.2013.211-
dc.contributor.localauthorSung, Hyung Jin-
dc.contributor.nonIdAuthorLee, Jin-
dc.contributor.nonIdAuthorJung, Seo Yoon-
dc.contributor.nonIdAuthorZaki, Tamer A.-
dc.type.journalArticleArticle-
dc.subject.keywordAuthorturbulent boundary layers-
dc.subject.keywordAuthorturbulent flows-
dc.subject.keywordPlusDIRECT NUMERICAL-SIMULATION-
dc.subject.keywordPlusLOW-REYNOLDS-NUMBER-
dc.subject.keywordPlusFINE-SCALE MOTIONS-
dc.subject.keywordPlusCHANNEL FLOW-
dc.subject.keywordPlusDRAG REDUCTION-
dc.subject.keywordPlusSKIN-FRICTION-
dc.subject.keywordPlusPRESSURE-GRADIENTS-
dc.subject.keywordPlusLINEAR-STABILITY-
dc.subject.keywordPlusTRANSITION-
dc.subject.keywordPlusVORTEX-
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 94 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0