Green route fast synthesis and characterization of chemical bath deposited nanocrystalline ZnS buffer layers

Cited 32 time in webofscience Cited 0 time in scopus
  • Hit : 605
  • Download : 0
Zinc sulphide (ZnS) thin films are deposited using chemical bath deposition method on the glass substrates in an aqueous alkaline reaction bath of zinc acetate and thiourea along with non-toxic complexing agent tri-sodium citrate at 95 degrees C. The results show noteworthy improvement in the growth rate of the deposited ZnS thin films and thickness of the film increases with the deposition time. From X-ray diffraction patterns, it is found that the ZnS thin films exhibit hexagonal polycrystalline phase reflecting from (101) and (0016) planes. The high resolution transmission electron microscopy studies confirmed the formation of hexagonal phase from the d-value calculation which was 0.3108 nm. X-ray photoelectron spectroscopy reveals that the Zn-S bonding energy is at 1022.5 and 162.1 eV for Zn 2p(3/2) and S 2p(1/2) states, respectively. Field emission scanning electron microscopy study shows that deposited thin films are highly uniform, with thin thickness and completely free from large ZnS clusters which usually form in aqueous solutions. Atomic force microscopy investigates that root mean square values of the ZnS thin films are from 3 to 4.5 nm and all the films are morphologically smooth. Energy dispersive spectroscopy shows that the ZnS thin films are relatively stoichiometric having Zn:S atomic ratio of 55:45. It is shown by ultraviolet-visible spectroscopy that similar to 90% transmittance and similar to 10% absorbance for the ZnS films in the visible region, which is significantly higher than that reported elsewhere and the band gap energy of the ZnS films is found to be 3.76, 3.74, and 3.71 eV, respectively. (C) 2013 Elsevier B. V. All rights reserved.
Publisher
ELSEVIER SCIENCE BV
Issue Date
2013-07
Language
English
Article Type
Article
Keywords

THIN-FILMS; SOLAR-CELLS; GROWTH; PRECURSOR; CITRATES; PH

Citation

CURRENT APPLIED PHYSICS, v.13, no.5, pp.850 - 856

ISSN
1567-1739
DOI
10.1016/j.cap.2012.12.012
URI
http://hdl.handle.net/10203/173727
Appears in Collection
MS-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 32 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0