Superlubric Sliding of Graphene Nanoflakes on Graphene

Cited 360 time in webofscience Cited 0 time in scopus
  • Hit : 442
  • Download : 0
The lubricating properties of graphite and graphene have been Intensely studied by sliding a frictional force microscope tip against them to understand the origin of the observed low friction. In contrast, the relative motion of free graphene layers remains poorly understood. Here we report a study of the sliding behavior of graphene nanoflakes (GNFs) on a graphene surface. Using scanning tunneling microscopy, we found that the GNFs show facile translational and rotational motions between commensurate initial and final states at temperatures as low as 5 K. The motion is initiated by a tip-induced transition of the flakes from a commensurate to an Incommensurate registry with the underlying graphene layer (the superlubric state), followed by rapid sliding until another commensurate position is reached. Counterintuitively, the average sliding distance of the flakes is larger at 5 K than at 77 K, indicating that thermal fluctuations are likely to trigger their transitions from superlubric back to commensurate ground states.
Publisher
AMER CHEMICAL SOC
Issue Date
2013-02
Language
English
Article Type
Article
Keywords

SCANNING-TUNNELING-MICROSCOPY; EPITAXIAL GRAPHENE; BILAYER GRAPHENE; CARBON NANOTUBES; LOW-FRICTION; RU(0001); DYNAMICS; SURFACE; SIMULATION; MONOLAYER

Citation

ACS NANO, v.7, no.2, pp.1718 - 1724

ISSN
1936-0851
DOI
10.1021/nn305722d
URI
http://hdl.handle.net/10203/173460
Appears in Collection
EEW-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 360 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0