FeatherWeight: Low-cost Optical Arbitration with QoS Support

Cited 19 time in webofscience Cited 0 time in scopus
  • Hit : 340
  • Download : 157
The nanophotonic signaling technology enables efficient global communication and low-diameter networks such as crossbars that are often optically arbitrated. However, existing optical arbitration schemes incur costly overheads (e.g., waveguides, laser power, etc.) to avoid starvation caused by their inherent fixed priority, which limits their applicability in power-bounded future many-core processors. On the other hand, quality-of-service (QoS) support in the on-chip network is becoming necessary due to an increase in the number of components in the network. Most prior work on QoS in on-chip networks has focused on conventional multi-hop electrical networks, where the efficiency of QoS is hindered by the limited capabilities of electrical global communication. In this work, we exploit the benefits of nanophotonics to build a lightweight optical arbitration scheme, FeatherWeight, with QoS support. Leveraging the efficient global communication, we devise a feedback-controlled, adaptive source throttling scheme to asymptotically approach weighted max-min fairness among all the nodes on the chip. By re-using existing datapath components to exchange minimal global information, FeatherWeight provides freedom from starvation while resulting in negligible (< 1%) throughput loss compared to the best-effort baseline optical arbitration. In addition, FeatherWeight provides strong fairness, performance isolation, and differentiated service for a wide range of traffic patterns. Compared to state-of-art optical arbitration schemes, FeatherWeight reduces power consumption by up to 87% while reducing execution time by 7.5%, on average, across SPLASH-2 and MineBench traces, and improving throughput on synthetic traffic patterns by up to 17%.
Publisher
IEEE/ACM
Issue Date
2011-12-05
Language
English
Citation

International Symposium on Microarchitecture, pp.105 - 116

DOI
10.1145/2155620.2155633
URI
http://hdl.handle.net/10203/171129
Appears in Collection
EE-Conference Papers(학술회의논문)
Files in This Item
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 19 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0