Surface immobilization of galactose onto aliphatic biodegradable polymers for hepatocyte culture

Cited 75 time in webofscience Cited 0 time in scopus
  • Hit : 396
  • Download : 49
A novel surface modification method of biodegradable polymers was investigated for inducing the attachment of specific cells onto the polymer surface via ligand-receptor interactions. Galactose, a targeting ligand specific to asialoglycoprotein receptors present on cell membrane of hepatocytes, was introduced on the surface of poly(D,L-lactic-co-glycolic acid) (PLGA) films. A terminal end group of carboxylic acid in PLGA was activated by dicyclohexylcarbodiimide and N-hydroxy-succinimide for the direct conjugation of lactose by reductive amination reaction. Di-block copolymers of PLGA-b-poly(ethylene glycol) (PEG) having a free terminal amine group were also synthesized and used for the conjugation of galactose for the introduction of a PEG spacer between PLGA and galactose. The presence of galactose moieties on the blend film surface was characterized by measuring water contact angle and Xray photon spectroscopy, and the amount of galactose was indirectly determined by a specific lectin-binding assay. With increasing the galactose concentration on the blend film surface, the initial attachment as well as the cell viability of hepatocyates concomitantly increased. The introduction of PEG spacer reduced the cell attachment and viability. Albumin secretion rate from hepatocytes was enhanced for galactose modified surfaces, whereas it was reduced for the surfaces not having galactose moieties. (C) 2002 Wiley Periodicals, Inc.
Publisher
JOHN WILEY SONS INC
Issue Date
2002-04
Language
English
Article Type
Article
Keywords

POLY(LACTIC ACID-CO-LYSINE); POLY(ETHYLENE GLYCOL); EXTRACELLULAR-MATRIX; LIVER-CELLS; ADHESION; SCAFFOLDS; BEHAVIOR; ASSAY; RGD; AGGREGATION

Citation

BIOTECHNOLOGY AND BIOENGINEERING, v.78, no.1, pp.1 - 10

ISSN
0006-3592
URI
http://hdl.handle.net/10203/13215
Appears in Collection
MS-Journal Papers(저널논문)BS-Journal Papers(저널논문)
Files in This Item
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 75 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0