Negative Differential Resistance of Oligo(Phenylene Ethynylene) Self-Assembled Monolayer Systems: The Electric-Field-Induced Conformational Change Mechanism

Cited 21 time in webofscience Cited 0 time in scopus
  • Hit : 391
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorKim, Hyungjunko
dc.contributor.authorJang, Seung Soonko
dc.contributor.authorKiehl, Richard A.ko
dc.contributor.authorGoddard, William A.ko
dc.date.accessioned2013-03-13T06:17:27Z-
dc.date.available2013-03-13T06:17:27Z-
dc.date.created2012-02-06-
dc.date.created2012-02-06-
dc.date.issued2011-03-
dc.identifier.citationJOURNAL OF PHYSICAL CHEMISTRY C, v.115, no.9, pp.3722 - 3730-
dc.identifier.issn1932-7447-
dc.identifier.urihttp://hdl.handle.net/10203/104627-
dc.description.abstractWe investigate here a possible mechanism for the room temperature negative differential resistance (NDR) in the Au/AN-OPE/RS/Hg self-assembled monolayer (SAM) system, where AN-OPE = 2'-amino,5'-nitro-oligo(phenylene ethynylene) and RS is a C(14) alkyl thiolate. Kiehl and co-workers showed that this molecular system leads to NDR with hysteresis and sweep-rate-dependent position and amplitude in the NDR peak. To investigate a molecular basis for this interesting behavior, we combine first-principles quantum mechanics (QM) and mesoscale lattice Monte Carlo methods to simulate the switching as a function of voltage and voltage rate, leading to results consistent with experimental observations. This simulation shows how the structural changes at the microscopic level lead to the NDR and sweep-rate-dependent macroscopic I V curve observed experimentally, suggesting a microscopic model that might aid in designing improved NDR systems.-
dc.languageEnglish-
dc.publisherAMER CHEMICAL SOC-
dc.subjectSCANNING-TUNNELING-MICROSCOPY-
dc.subjectROOM-TEMPERATURE-
dc.subjectMOLECULAR JUNCTIONS-
dc.subjectCONDUCTANCE-
dc.subjectTRANSPORT-
dc.subjectDIODE-
dc.subjectMODEL-
dc.titleNegative Differential Resistance of Oligo(Phenylene Ethynylene) Self-Assembled Monolayer Systems: The Electric-Field-Induced Conformational Change Mechanism-
dc.typeArticle-
dc.identifier.wosid000287833200029-
dc.identifier.scopusid2-s2.0-79952285450-
dc.type.rimsART-
dc.citation.volume115-
dc.citation.issue9-
dc.citation.beginningpage3722-
dc.citation.endingpage3730-
dc.citation.publicationnameJOURNAL OF PHYSICAL CHEMISTRY C-
dc.identifier.doi10.1021/jp1114916-
dc.contributor.localauthorKim, Hyungjun-
dc.contributor.nonIdAuthorJang, Seung Soon-
dc.contributor.nonIdAuthorKiehl, Richard A.-
dc.type.journalArticleArticle-
dc.subject.keywordPlusSCANNING-TUNNELING-MICROSCOPY-
dc.subject.keywordPlusROOM-TEMPERATURE-
dc.subject.keywordPlusMOLECULAR JUNCTIONS-
dc.subject.keywordPlusCONDUCTANCE-
dc.subject.keywordPlusTRANSPORT-
dc.subject.keywordPlusDIODE-
dc.subject.keywordPlusMODEL-
Appears in Collection
EEW-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 21 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0