Effect of ion-to-electron mass ratio on the evolution of ion beam driven instability in particle-in-cell simulations

Cited 6 time in webofscience Cited 0 time in scopus
  • Hit : 306
  • Download : 0
In particle-in-cell (PIC) simulation studies of ion-ion two-stream instability, a reduced ion-to-electron mass ratio is often employed to save computation time. It is tacitly assumed that electrons do not play a significant role in the evolution of the instability as the ion-ion interactions are regarded to occur on time scales much slower than the response time of electrons. However, as the effect of such a reduced mass ratio has never been closely examined, we have studied the evolution of the ion beam driven instability using a one-dimensional electrostatic PIC code by rescaling the simulation parameters according to the ion-electron mass ratio. We made a reference simulation run with a mass ratio of 100 first and compared the results to the simulation results using the real mass ratio with parameters rescaled from those of the reduced mass ratio. External electric fields were applied in these simulations, which accelerated the electrons and excited an ion acoustic type instability, forming electron phase space holes. Merging of the electron holes affected the ion dynamics significantly when the reduced mass ratio was used, while the interplay between the electron and ion dynamics became different depending on the rescaling methods in the case of the real mass ratio. Another simulation test with much enhanced external electric field results in similar mass ratio dependence. The present simulation results clearly show that the reduced mass ratio should be used cautiously in PIC simulations as the electron dynamics can modify the ion instabilities significantly by affecting the ion motions. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4754002]
Publisher
AMER INST PHYSICS
Issue Date
2012-09
Language
English
Article Type
Article
Citation

PHYSICS OF PLASMAS, v.19, no.9

ISSN
1070-664X
DOI
10.1063/1.4754002
URI
http://hdl.handle.net/10203/104515
Appears in Collection
PH-Journal Papers(저널논문)
Files in This Item
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 6 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0