Energy storage in composites of a redox couple host and a lithium ion host

Cited 44 time in webofscience Cited 0 time in scopus
  • Hit : 529
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorKim, Sung-Wookko
dc.contributor.authorNam, Kyung-Wanko
dc.contributor.authorSeo, Dong-Hwako
dc.contributor.authorHong, Ji-Hyunko
dc.contributor.authorKim, Hyung-Subko
dc.contributor.authorGwon, Hyeok-Joko
dc.contributor.authorKang, Ki-Sukko
dc.date.accessioned2013-03-13T01:49:27Z-
dc.date.available2013-03-13T01:49:27Z-
dc.date.created2012-08-21-
dc.date.created2012-08-21-
dc.date.created2012-08-21-
dc.date.created2012-08-21-
dc.date.issued2012-06-
dc.identifier.citationNANO TODAY, v.7, no.3, pp.168 - 173-
dc.identifier.issn1748-0132-
dc.identifier.urihttp://hdl.handle.net/10203/104161-
dc.description.abstractThe quest for new positive electrodes for rechargeable lithium-ion batteries has been escalating in recent years. Until now, candidates of positive electrode were limited to crystals that contain both redox-active element (usually transition-metal) and lithium ion in the open framework with few exceptions. Here, we demonstrate lithium-free compounds, a material with little activity by itself, can be activated electrochemically by addition of LiF after the first charging. This general strategy is exemplified in various lithium-free iron compounds. Reversible lithium ion extraction and reinsertion take place for Fe2+F2, Fe2+ SO4, and Fe22+P2O7, when blended with LiF in nanoscale, in which a simultaneous valence change of Fe2+/3+ occurs above 3 V. FeF2-LiF could deliver 190 mAh g(-1) (similar to 3.53 V) at 50 mA g(-1) which is even higher energy density than that crystalline LiFePO4 can offer. Various combinations of blending are possible using this approach, which can bring a new branch of material group for positive electrodes in lithium-ion batteries. (C) 2012 Elsevier Ltd. All rights reserved.-
dc.languageEnglish-
dc.publisherELSEVIER SCI LTD-
dc.titleEnergy storage in composites of a redox couple host and a lithium ion host-
dc.typeArticle-
dc.identifier.wosid000306031800006-
dc.identifier.scopusid2-s2.0-84862018701-
dc.type.rimsART-
dc.citation.volume7-
dc.citation.issue3-
dc.citation.beginningpage168-
dc.citation.endingpage173-
dc.citation.publicationnameNANO TODAY-
dc.identifier.doi10.1016/j.nantod.2012.04.004-
dc.contributor.localauthorSeo, Dong-Hwa-
dc.contributor.localauthorKang, Ki-Suk-
dc.contributor.nonIdAuthorKim, Sung-Wook-
dc.contributor.nonIdAuthorNam, Kyung-Wan-
dc.contributor.nonIdAuthorHong, Ji-Hyun-
dc.contributor.nonIdAuthorKim, Hyung-Sub-
dc.description.isOpenAccessN-
dc.type.journalArticleArticle-
dc.subject.keywordAuthorEnergy storage-
dc.subject.keywordAuthorLi -ion batteries-
dc.subject.keywordAuthorElectrochemistry-
dc.subject.keywordAuthorPositive electrode-
dc.subject.keywordAuthorComposite materials-
dc.subject.keywordPlusMETAL FLUORIDE NANOCOMPOSITES-
dc.subject.keywordPlusCATHODE MATERIAL-
dc.subject.keywordPlusHIGH-POWER-
dc.subject.keywordPlusBATTERIES-
dc.subject.keywordPlusELECTROCHEMISTRY-
Appears in Collection
MS-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 44 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0