Sensitivity and specificity of high-resolution balanced steady-state free precession fMRI at high field of 9.4 T

Cited 15 time in webofscience Cited 0 time in scopus
  • Hit : 556
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorPark, Sung-Hongko
dc.contributor.authorKim, Taeko
dc.contributor.authorWang, Pingko
dc.contributor.authorKim, Seong-Giko
dc.date.accessioned2013-03-12T18:47:56Z-
dc.date.available2013-03-12T18:47:56Z-
dc.date.created2012-06-21-
dc.date.created2012-06-21-
dc.date.issued2011-09-
dc.identifier.citationNEUROIMAGE, v.58, no.1, pp.168 - 176-
dc.identifier.issn1053-8119-
dc.identifier.urihttp://hdl.handle.net/10203/103183-
dc.description.abstractBalanced steady-state free precession (bSSFP) is an attractive fMRI method at high fields due to minimal spatial distortion. To examine sensitivity and specificity of bSSFP fMRI at ultrahigh magnetic field of 9.4 T, we performed high-resolution pass-band high flip-angle (16 degrees) bSSFP fMRI with four phase cycling (PC) angles at two repetition times (TR) of 10 ms and 20 ms and conventional gradient-recalled-echo (GRE) fMRI with TR of 20 ms on rat brain during forepaw stimulation. The sensitivity of bSSFP fMRI with TR of 20 ms was higher than that of GRE fMRI regardless of PC angle. Because of magnetic field inhomogeneity, fMRI foci were changed with PC angle in bSSFP fMRI, which was more prominent when TR was shorter. Within a middle cortical layer region where magnetic field inhomogeneity was relatively small, the homogeneity of bSSFP fMRI signals was higher at shorter TR. Acquisition of baseline transition-band bSSFP images helped to identify pass- and transition-band regions and to understand corresponding bSSFP fMRI signals. Fourier analysis of the multiple PC bSSFP datasets provided echoes of multiple pathways separately, and the main echo component showed lower sensitivity and better homogeneity than the free induction decay component. In summary, pass-band bSSFP techniques would have advantages over GRE-based fMRI in terms of sensitivity, and may be a good choice for fMRI at ultrahigh fields. (C) 2011 Elsevier Inc. All rights reserved.-
dc.languageEnglish-
dc.publisherACADEMIC PRESS INC ELSEVIER SCIENCE-
dc.subjectCEREBRAL-BLOOD-FLOW-
dc.subjectSSFP FMRI-
dc.subjectBOLD FMRI-
dc.subjectNEURAL ACTIVITY-
dc.subjectFUNCTIONAL MRI-
dc.subjectBRAIN-
dc.subjectECHO-
dc.subjectSTIMULATION-
dc.subjectTRUEFISP-
dc.subjectCORTEX-
dc.titleSensitivity and specificity of high-resolution balanced steady-state free precession fMRI at high field of 9.4 T-
dc.typeArticle-
dc.identifier.wosid000293548500019-
dc.identifier.scopusid2-s2.0-79960630731-
dc.type.rimsART-
dc.citation.volume58-
dc.citation.issue1-
dc.citation.beginningpage168-
dc.citation.endingpage176-
dc.citation.publicationnameNEUROIMAGE-
dc.identifier.doi10.1016/j.neuroimage.2011.06.010-
dc.contributor.localauthorPark, Sung-Hong-
dc.contributor.nonIdAuthorKim, Tae-
dc.contributor.nonIdAuthorWang, Ping-
dc.contributor.nonIdAuthorKim, Seong-Gi-
dc.type.journalArticleArticle-
dc.subject.keywordAuthorBalanced SSFP-
dc.subject.keywordAuthorfMRI-
dc.subject.keywordAuthorPhase cycling-
dc.subject.keywordAuthorPass-band bSSFP-
dc.subject.keywordAuthorTransition-band bSSFP-
dc.subject.keywordAuthorFourier analysis-
dc.subject.keywordAuthorSpatial specificity-
dc.subject.keywordAuthorHigh resolution-
dc.subject.keywordAuthorHigh fields-
dc.subject.keywordPlusCEREBRAL-BLOOD-FLOW-
dc.subject.keywordPlusSSFP FMRI-
dc.subject.keywordPlusBOLD FMRI-
dc.subject.keywordPlusNEURAL ACTIVITY-
dc.subject.keywordPlusFUNCTIONAL MRI-
dc.subject.keywordPlusBRAIN-
dc.subject.keywordPlusECHO-
dc.subject.keywordPlusSTIMULATION-
dc.subject.keywordPlusTRUEFISP-
dc.subject.keywordPlusCORTEX-
Appears in Collection
BiS-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 15 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0