Three-dimensional nanonetworks for giant stretchability in dielectrics and conductors

Cited 294 time in webofscience Cited 0 time in scopus
  • Hit : 1118
  • Download : 521
DC FieldValueLanguage
dc.contributor.authorPark, Junyongko
dc.contributor.authorWang, Shuodaoko
dc.contributor.authorLi, Mingko
dc.contributor.authorAhn, Changuiko
dc.contributor.authorHyun, Jerome K.ko
dc.contributor.authorKim, Dong Seokko
dc.contributor.authorKim, Do Kyungko
dc.contributor.authorRogers, John A.ko
dc.contributor.authorHuang, Yonggangko
dc.contributor.authorJeon, Seokwooko
dc.date.accessioned2013-03-12T16:08:22Z-
dc.date.available2013-03-12T16:08:22Z-
dc.date.created2012-07-06-
dc.date.created2012-07-06-
dc.date.issued2012-06-
dc.identifier.citationNATURE COMMUNICATIONS, v.3, no.916, pp.1 - 8-
dc.identifier.issn2041-1723-
dc.identifier.urihttp://hdl.handle.net/10203/102820-
dc.description.abstractThe realization of levels of stretchability that extend beyond intrinsic limits of bulk materials is of great importance to stretchable electronics. Here we report large-area, three-dimensional nano-architectures that achieve this outcome in materials that offer both insulating and conductive properties. For the elastomer poly(dimethylsiloxane), such geometries enhance the stretchability and fracture strain by similar to 62 % and similar to 225 % over the bulk, unstructured case. The underlying physics involves local rotations of narrow structural elements in the three-dimensional network, as identified by mechanical modelling. To demonstrate the applications of three-dimensional poly(dimethylsiloxane), we create a stretchable conductor obtained by filling the interstitial regions with liquid metal. This stretchable composite shows extremely high electrical conductivity (similar to 24,100 S cm(-1)) even at strains > 200 %, with good cyclic properties and with current-carrying capacities that are sufficient for interconnects in light-emitting diode systems. Collectively, these concepts provide new design opportunities for stretchable electronics.-
dc.languageEnglish-
dc.publisherNATURE PUBLISHING GROUP-
dc.subjectLARGE-AREA-
dc.subjectINTERFERENCE LITHOGRAPHY-
dc.subjectMICROFLUIDIC DEVICES-
dc.subjectELASTIC CONDUCTORS-
dc.subjectCARBON NANOTUBES-
dc.subjectPHASE MASKS-
dc.subjectNANOSTRUCTURES-
dc.subjectPRESSURE-
dc.subjectMATRIX-
dc.subjectSENSOR-
dc.titleThree-dimensional nanonetworks for giant stretchability in dielectrics and conductors-
dc.typeArticle-
dc.identifier.wosid000306099900043-
dc.identifier.scopusid2-s2.0-84863333250-
dc.type.rimsART-
dc.citation.volume3-
dc.citation.issue916-
dc.citation.beginningpage1-
dc.citation.endingpage8-
dc.citation.publicationnameNATURE COMMUNICATIONS-
dc.identifier.doi10.1038/ncomms1929-
dc.contributor.localauthorKim, Do Kyung-
dc.contributor.localauthorJeon, Seokwoo-
dc.contributor.nonIdAuthorWang, Shuodao-
dc.contributor.nonIdAuthorLi, Ming-
dc.contributor.nonIdAuthorHyun, Jerome K.-
dc.contributor.nonIdAuthorRogers, John A.-
dc.contributor.nonIdAuthorHuang, Yonggang-
dc.description.isOpenAccessY-
dc.type.journalArticleArticle-
dc.subject.keywordPlusLARGE-AREA-
dc.subject.keywordPlusINTERFERENCE LITHOGRAPHY-
dc.subject.keywordPlusMICROFLUIDIC DEVICES-
dc.subject.keywordPlusELASTIC CONDUCTORS-
dc.subject.keywordPlusCARBON NANOTUBES-
dc.subject.keywordPlusPHASE MASKS-
dc.subject.keywordPlusNANOSTRUCTURES-
dc.subject.keywordPlusPRESSURE-
dc.subject.keywordPlusMATRIX-
dc.subject.keywordPlusSENSOR-
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 294 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0