KINETIC MODELING OF H-MODE PEDESTAL WITH EFFECTS FROM ANOMALOUS TRANSPORT AND MHD STABILITY

Cited 10 time in webofscience Cited 0 time in scopus
  • Hit : 301
  • Download : 0
Scaling of the H-mode pedestal in tokamak plasmas with type I ELMs and dependence of the pedestal properties and the resulting divertor head load width with the plasma elongation and plasma current are investigated using the kinetic neoclassical XGCO code for DIII-D and Alcator C-Mod tokamaks. The simulations in this study use realistic diverted geometry and are self-consistent with the inclusion of kinetic neoclassical physics, theory-based anomalous transport models with the ExB flow shearing effects, as well as an MHD ELM triggering criterion. Scalings for the pedestal width and height are developed as a function of the scanned plasma parameters. The nonlinear interplay between anomalous and neoclassical effects motivates the development of a self-consistent simulation model that includes neoclassical and anomalous effects simultaneously. It is demonstrated that the divertor heat load width depend on the plasma currents. In the development of this dependence, effects of neutral collisions and anomalous transport are taken into account. Changes in the neoclassical divertor heat load fluxes associated with the introduction of the neutral collision and anomalous transport effects are described.
Publisher
KHARKOV INST PHYSICS & TECHNOLOGY
Issue Date
2011
Language
English
Article Type
Article
Keywords

PLASMA

Citation

PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY, no.1, pp.8 - 12

ISSN
1562-6016
URI
http://hdl.handle.net/10203/100269
Appears in Collection
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 10 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0