APE: A Data-Driven, Behavioral Model-Based Anti-Poaching Engine

Cited 17 time in webofscience Cited 0 time in scopus
  • Hit : 24
  • Download : 0
We consider the problem of protecting a set of animals such as rhinos and elephants in a game park using D drones and R ranger patrols (on the ground) with R >= D. Using two years of data about animal movements in a game park, we propose the probabilistic spatio-temporal graph (pSTG) model of animal movement behaviors and show how we can learn it from the movement data. Using 17 months of data about poacher behavior, we also learn the probability that a region in the game park will be targeted by poachers. We formalize the anti-poaching problem as that of finding a coordinated route for the drones and ranger patrols that maximize the expected number of animals that are protected, given these two models as input and show that it is NP-complete. Because of this, we fine tune classical local search and genetic algorithms to the case of anti-poaching by taking specific advantage of the nature of the anti-poaching problem and its objective function. We develop a measure of the quality of an algorithm to route the drones and ranger patrols called "improvement ratio." We develop a dynamic programming based APE_Coord_Route algorithm and show that it performs very well in practice, achieving an improvement ratio over 90%.
Publisher
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
Issue Date
2015-06
Language
English
Article Type
Article
Citation

IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, v.2, no.2, pp.15 - 37

ISSN
2329-924X
DOI
10.1109/TCSS.2016.2517452
URI
http://hdl.handle.net/10203/318969
Appears in Collection
CS-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 17 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0