Buffer Layer Engineering of Indium Oxide Based Trench TFT for Ultra High Current Driving

Cited 2 time in webofscience Cited 0 time in scopus
  • Hit : 57
  • Download : 0
Oxide thin-film transistors (TFTs) with high mobility that exceed 100 cm(2)/ V & sdot;s and appropriate turn-on voltage (V-on) are necessary to drive next-generation displays and memory devices. However, a trade-off relationship exists between mobility and V-on , making it difficult to achieve both in the same oxide TFT. In this letter, we propose a buffer layer engineered trench-TFT (T-TFT) as a solution to this trade-off problem. Planar-TFT (P-TFT) with an Al2O3 buffer layer exhibits a high current level; however, its V-on value is unsuitable. In contrast, P-TFT with an SiO2 buffer demonstrates a V-on close to zero, although its mobility remains below 100 cm(2)/ V & sdot;s . The T-TFT, which incorporates both Al2O3 and SiO2 buffer layers, shows a high mobility of 129 cm(2)/ V & sdot;s and a suitable V-on of -0.4 V, selectively utilizing the advantages of P-TFTs. Based on electrical measurements and material analyses, the active layer on each buffer layer performs a distinct role in the T-TFT; the active layer on SiO2 serves as the " V-on determiner," owing to its low oxygen vacancy, whereas the active layer on Al2O3 enhances the mobility, through reduced electron trap sites and a smooth surface.
Publisher
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
Issue Date
2023-11
Language
English
Article Type
Article
Citation

IEEE ELECTRON DEVICE LETTERS, v.44, no.11, pp.1849 - 1852

ISSN
0741-3106
DOI
10.1109/LED.2023.3312360
URI
http://hdl.handle.net/10203/315240
Appears in Collection
MS-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 2 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0