Photonic topological Lifshitz interfaces

Cited 1 time in webofscience Cited 0 time in scopus
  • Hit : 169
  • Download : 0
The intrinsic geometry of wavevector diagrams describes electronic or photonic transport at a given energy level. Lifshitz transition is an intriguing example of the topological transition in wavevector diagrams, which plays a critical role in abnormal transport with enhanced magnetoresistance or superconductivity. Here, we develop the spatial analogy of the Lifshitz transition, which provides a comprehensive topological perspective on transverse-spin interface states. We establish the excitation conditions of transverse-spin interface states, which require the "Lifshitz interface" - the interface between different topologies of wavevector diagrams - along with the gap in wavevector diagrams. Based on the detailed analysis of this topological phenomenon with respect to the dimensionality and gaps of wavevector diagrams across the Lifshitz interface, we show distinct parity of transverse spins and power flows in transverse-spin modes. The unique symmetry of interface states realizing Abraham-spin-momentum locking represents the gauge induced by the Lifshitz interface, which provides a novel insight into the Abraham-Minkowski controversy.
Publisher
WALTER DE GRUYTER GMBH
Issue Date
2022-03
Language
English
Article Type
Article
Citation

NANOPHOTONICS, v.11, no.6, pp.1211 - 1217

ISSN
2192-8606
DOI
10.1515/nanoph-2021-0807
URI
http://hdl.handle.net/10203/292783
Appears in Collection
MS-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 1 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0