Lignin-Induced CaCO3 Vaterite Structure for Biocatalytic Artificial Photosynthesis

Cited 11 time in webofscience Cited 0 time in scopus
  • Hit : 141
  • Download : 0
The vaterite phase of CaCO3 exhibits unique characteristics, such as high porosity, surface area, dispersivity, and low specific gravity, but it is the most unstable polymorph. Here, we report lignin-induced stable vaterite as a support matrix for integrated artificial photosynthesis through the encapsulation of key active components such as the photosensitizer (eosin y, EY) and redox enzyme (l-glutamate dehydrogenase, GDH). The lignin-vaterite/EY/GDH photobiocatalytic platform enabled the regeneration of the reduced nicotinamide cofactor under visible light and facilitated the rapid conversion of α-ketoglutarate into l-glutamate (initial conversion rate, 0.41 mM h–1; turnover frequency, 1060 h–1; and turnover number, 39,750). The lignin-induced vaterite structure allowed for long-term protection and recycling of the active components while facilitating the photosynthesis reaction due to the redox-active lignin. Succession of stability tests demonstrated a significant improvement of GDH’s robustness in the lignin-vaterite structure against harsh environments. This work provides a simple approach for solar-to-chemical conversion using a sustainable, integrated light-harvesting system.
Publisher
AMER CHEMICAL SOC
Issue Date
2021-12
Language
English
Article Type
Article
Citation

ACS APPLIED MATERIALS & INTERFACES, v.13, no.49, pp.58522 - 58531

ISSN
1944-8244
DOI
10.1021/acsami.1c16661
URI
http://hdl.handle.net/10203/291105
Appears in Collection
MS-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 11 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0