Artificial Intelligence to Accelerate the Discovery of N-2 Electroreduction Catalysts

Cited 61 time in webofscience Cited 39 time in scopus
  • Hit : 503
  • Download : 0
The development of catalysts for the electrochemical N2 reduction reaction (NRR) with a low limiting potential and high Faradaic efficiency is highly desirable but remains challenging. Here, to achieve acceleration, we develop and report a slab graph convolutional neural network (SGCNN), an accurate and flexible machine learning (ML) model that is suited for probing surface reactions in catalysis. With a self-accumulated database of 3040 surface calculations at the density-functional-theory (DFT) level, SGCNN predicted the binding energies, ranging over 8 eV, of five key adsorbates (H, N2, N2H, NH, NH2) related to NRR performance with a mean absolute error (MAE) of only 0.23 eV. SGCNN only requires the low-level inputs of elemental properties available in the periodic table of elements and connectivity information of constituent atoms; thus, accelerations can be realized. Via a combined process of SGCNN-driven predictions and DFT verifications, four novel catalysts in the L12 crystal space, including V3Ir(111), Tc3Hf(111), V3Ni(111), and Tc3Ta(111), are proposed as stable candidates that likely exhibit both a lower limiting potential and higher Faradaic efficiency in the NRR, relative to the reference Mo(110). The ML work combined with a statistical data analysis reveals that catalytic surfaces with an average d-orbital occupation between 4 and 6 could lower the limiting potential and potentially overcome the scaling relation in the NRR.
Publisher
AMER CHEMICAL SOC
Issue Date
2020-01
Language
English
Article Type
Article
Citation

CHEMISTRY OF MATERIALS, v.32, no.2, pp.709 - 720

ISSN
0897-4756
DOI
10.1021/acs.chemmater.9b03686
URI
http://hdl.handle.net/10203/271919
Appears in Collection
MS-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 61 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0