Tree to Bone: Lignin/Polycaprolactone Nanofibers for Hydroxyapatite Biomineralization

Cited 75 time in webofscience Cited 54 time in scopus
  • Hit : 341
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorWang, Dingko
dc.contributor.authorJang, Jinhyeongko
dc.contributor.authorKim, Kayoungko
dc.contributor.authorKim, Jinhyunko
dc.contributor.authorPark, Chan Beumko
dc.date.accessioned2019-07-29T07:20:22Z-
dc.date.available2019-07-29T07:20:22Z-
dc.date.created2019-07-29-
dc.date.issued2019-07-
dc.identifier.citationBIOMACROMOLECULES, v.20, no.7, pp.2684 - 2693-
dc.identifier.issn1525-7797-
dc.identifier.urihttp://hdl.handle.net/10203/263890-
dc.description.abstractBone contains an organic matrix composed of aligned collagen fibers embedded with nanosized inorganic hydroxyapatite (HAp). Many efforts are being made to mimic the natural mineralization process and create artificial bone scaffolds that show elaborate morphologies, excellent mechanical properties, and vital biological functions. This study reports a newly discovered function of lignin mediating the formation of human bone-like HAp. Lignin is the second most abundant organic material in nature, and it exhibits many attractive properties for medical applications, such as high durability, stability, antioxidant and antibacterial activities, and biocompatibility. Numerous phenolic and aliphatic hydroxyl moieties exist in the side chains of lignin, which donate adequate reactive sites for chelation with Ca2+ and the subsequent nucleation of HAp through coprecipitation of Ca2+ and PO43-. The growth of HAp crystals was facilitated by simple incubation of the electrospun lignin/polycaprolactone (PCL) matrix in a simulated body fluid. Multiple analyses revealed that HAp crystals were structurally and mechanically similar to the native bone. Furthermore, the mineralized lignin/PCL nanofibrous films facilitated efficient adhesion and proliferation of osteoblasts by directing filopodial extension. Our results underpin the expectations for this lignin based biomaterial in future biointerfaces and hard-tissue engineering.-
dc.languageEnglish-
dc.publisherAMER CHEMICAL SOC-
dc.titleTree to Bone: Lignin/Polycaprolactone Nanofibers for Hydroxyapatite Biomineralization-
dc.typeArticle-
dc.identifier.wosid000474812200022-
dc.identifier.scopusid2-s2.0-85067041502-
dc.type.rimsART-
dc.citation.volume20-
dc.citation.issue7-
dc.citation.beginningpage2684-
dc.citation.endingpage2693-
dc.citation.publicationnameBIOMACROMOLECULES-
dc.identifier.doi10.1021/acs.biomac.9b00451-
dc.contributor.localauthorPark, Chan Beum-
dc.description.isOpenAccessN-
dc.type.journalArticleArticle-
dc.subject.keywordPlusCALCIUM-PHOSPHATE-
dc.subject.keywordPlusOSTEOBLAST DIFFERENTIATION-
dc.subject.keywordPlusDEFICIENT-HYDROXYAPATITE-
dc.subject.keywordPlusMECHANICAL-PROPERTIES-
dc.subject.keywordPlusELASTIC-MODULUS-
dc.subject.keywordPlusIN-VIVO-
dc.subject.keywordPlusTISSUE-
dc.subject.keywordPlusLIGNIN-
dc.subject.keywordPlusCELL-
dc.subject.keywordPlusSURFACE-
Appears in Collection
MS-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 75 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0