Tuning Molecular Interactions for Highly Reproducible and Efficient Formamidinium Perovskite Solar Cells via Adduct Approach

Cited 351 time in webofscience Cited 0 time in scopus
  • Hit : 438
  • Download : 0
The Lewis acid-base adduct approach has been widely used to form uniform perovskite films, which has provided a methodological base for the development of high-performance perovskite solar cells. However, its incompatibility with formamidinium (FA)-based perovskites has impeded further enhancement of photovoltaic performance and stability. Here, we report an efficient and reproducible method to fabricate highly uniform FAPbI(3) films via the adduct approach. Replacement of the typical Lewis base dimethyl sulfoxide (DMSO) with N-methyl-2-pyrrolidone (NMP) enabled the formation of a stable intermediate adduct phase, which can be converted into a uniform and pinhole-free FAPbI(3) film. Infrared and computational analyses revealed a stronger interaction between NMP with the FA cation than DMSO, which facilitates the formation of a stable FAI-PbI2 center dot NMP adduct. On the basis of the molecular interactions with different Lewis bases, we proposed criteria for selecting the Lewis bases. Owed to the high film quality, perovskite solar cells with the highest PCE over 20% (stabilized PCE of 19.34%) and average PCE of 18.83 +/- 0.73% were demonstrated.
Publisher
AMER CHEMICAL SOC
Issue Date
2018-05
Language
English
Article Type
Article
Citation

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, v.140, no.20, pp.6317 - 6324

ISSN
0002-7863
DOI
10.1021/jacs.8b01037
URI
http://hdl.handle.net/10203/244057
Appears in Collection
MS-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 351 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0