CAPTCHA image generation systems using generative adversarial networks

Cited 20 time in webofscience Cited 0 time in scopus
  • Hit : 527
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorKwon, Hyunko
dc.contributor.authorKim, Yongchulko
dc.contributor.authorYoon, Hyunsooko
dc.contributor.authorChoi, Daeseonko
dc.date.accessioned2018-04-24T02:25:43Z-
dc.date.available2018-04-24T02:25:43Z-
dc.date.created2018-03-26-
dc.date.created2018-03-26-
dc.date.created2018-03-26-
dc.date.created2018-03-26-
dc.date.created2018-03-26-
dc.date.issued2018-02-
dc.identifier.citationIEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, v.E101D, no.2, pp.543 - 546-
dc.identifier.issn1745-1361-
dc.identifier.urihttp://hdl.handle.net/10203/241128-
dc.description.abstractWe propose new CAPTCHA image generation systems by using generative adversarial network (GAN) techniques to strengthen against CAPTCHA solvers. To verify whether a user is human, CAPTCHA images are widely used on the web industry today. We introduce two different systems for generating CAPTCHA images, namely, the distance GAN (D-GAN) and composite GAN (C-GAN). The D-GAN adds distance values to the original CAPTCHA images to generate new ones, and the C-GAN generates a CAPTCHA image by composing multiple source images. To evaluate the performance of the proposed schemes, we used the CAPTCHA breaker software as CAPTCHA solver. Then, we compared the resistance of the original source images and the generated CAPTCHA images against the CAPTCHA solver. The results show that the proposed schemes improve the resistance to the CAPTCHA solver by over 67.1% and 89.8% depending on the system.-
dc.languageEnglish-
dc.publisherIEICE-INST ELECTRONICS INFORMATION COMMUNICATIONS ENG-
dc.titleCAPTCHA image generation systems using generative adversarial networks-
dc.typeArticle-
dc.identifier.wosid000431762500030-
dc.identifier.scopusid2-s2.0-85041553927-
dc.type.rimsART-
dc.citation.volumeE101D-
dc.citation.issue2-
dc.citation.beginningpage543-
dc.citation.endingpage546-
dc.citation.publicationnameIEICE TRANSACTIONS ON INFORMATION AND SYSTEMS-
dc.identifier.doi10.1587/transinf.2017EDL8175-
dc.contributor.localauthorYoon, Hyunsoo-
dc.contributor.nonIdAuthorKim, Yongchul-
dc.contributor.nonIdAuthorChoi, Daeseon-
dc.description.isOpenAccessN-
dc.type.journalArticleArticle-
dc.subject.keywordAuthorCAPTCHA-
dc.subject.keywordAuthorgenerative adversarial network-
dc.subject.keywordAuthordeep convolutional network-
Appears in Collection
CS-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 20 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0