Pushing the Energy Output and Cyclability of Sodium Hybrid Capacitors at High Power to New Limits

Cited 103 time in webofscience Cited 0 time in scopus
  • Hit : 422
  • Download : 0
Hybrid capacitors, especially sodium hybrid capacitors (NHCs), have continued to gain importance and are extensively studied based on their excellent potential to serve as advanced devices for fulfilling high energy and high power requirements at a low cost. To achieve remarkable performance in hybrid capacitors, the two electrodes employed must be superior with enhanced charge storage capability and fast kinetics. In this study, a new sodium hybrid capacitor system with a sodium super ionic conductor NaTi2(PO4)3 grown on graphene nanosheets as an intercalation electrode and 2D graphene nanosheets as an adsorption electrode is reported for the first time. This new system delivers a high energy density of ≈80 W h kg−1 and a high specific power of 8 kW kg−1. An ultralow performance fading of ≈0.13% per 1000 cycles (90%–75 000 cycles) outperforms previously reported sodium ion capacitors. The enhanced charge transfer kinetics and reduced interfacial resistance at high current rates deliver a high specific energy without compromising the high specific power along with high durability, and thereby bridge batteries and capacitors. This new research on kinetically enhanced NHCs can be a trendsetter for the development of advanced energy storage devices requiring high energy—high power.
Publisher
WILEY-V C H VERLAG GMBH
Issue Date
2017-07
Language
English
Article Type
Article
Keywords

RECHARGEABLE LITHIUM BATTERIES; NA-ION BATTERIES; GRAPHENE OXIDE; ELECTRODE MATERIALS; DENSITY SUPERCAPACITORS; CARBON MATERIALS; ANODE MATERIAL; CYCLE-LIFE; STORAGE; PERFORMANCE

Citation

ADVANCED ENERGY MATERIALS, v.7, no.14

ISSN
1614-6832
DOI
10.1002/aenm.201602654
URI
http://hdl.handle.net/10203/237213
Appears in Collection
MS-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 103 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0