Performance Evaluation of Radio Map Construction Methods for Wi-Fi Positioning Systems

Cited 15 time in webofscience Cited 0 time in scopus
  • Hit : 284
  • Download : 0
A radio map is a collection of signal fingerprints labeled with their collected locations. It is known that the performance of a fingerprint-based positioning systems is closely related to the precision and accuracy of the underlying radio maps. However, little has been studied on the performance of radio maps in relation to the fingerprint collection methods and the radio map models, which determine the accuracy and precision of radio maps, respectively. This paper evaluates the performance of various radio map construction methods in both indoor and outdoor environments. Four radio map construction methods, i.e., a point-by-point manual calibration, a walking survey, a semisupervised learning-based method, and an unsupervised learning-based method, have been compared. We also evaluate the performance of various types of radio map models that represent the characteristics of collected fingerprints. To demonstrate the importance of the radio map model, a new model named signal fluctuation matrix (SFM) was developed, and its performance was compared with that of the three conventional radio map models, respectively. The evaluation revealed that the performance of the radio maps was very sensitive to the design of radio map models and the number of fingerprints collected at each location. The performance achieved by SFM-based positioning was comparable with that of the other models despite using a small number of fingerprints.
Publisher
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
Issue Date
2017-04
Language
English
Article Type
Article
Keywords

LOCALIZATION; NETWORKS

Citation

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, v.18, no.4, pp.880 - 889

ISSN
1524-9050
DOI
10.1109/TITS.2016.2594479
URI
http://hdl.handle.net/10203/223700
Appears in Collection
CS-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 15 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0