Fabrication and evaluation of a slicon-based micro pulsating heat spreader

Cited 44 time in webofscience Cited 0 time in scopus
  • Hit : 380
  • Download : 0
A silicon-based micro pulsating heat spreader (MPHS) was fabricated and its thermal performance was experimentally evaluated. The width and height of the channel are 1 mm and 0.4 mm. respectively. The MPHS has length of 50 mm, width of 15.5 mm, and thickness of 1.5 mm. Ethanol was used as a working fluid. The MPHS achieved maximum effective thermal conductivity of 600 W/m K and a maximum heat transport capability of 4 W. In order to investigate the oscillating flow characteristics, the frequency and the amplitude of the liquid oscillation were measured. As the input power increases, the frequency and the amplitude are increased, which results in an increase in the thermal performance of the MPHS. The effective thermal conductivity was evaluated from a theoretical model in which the thermal performance of the MPHS is assumed to be similar to that of oscillating flow in a channel completely filled with liquid. When the input power is low, the calculated values are in close agreement with the measured values. When the input power is high beyond 2W. the measured values are slightly higher than the calculated values, which is due to the contribution of heat transport by phase change. The MPHS transports heat mainly by liquid oscillation and the contribution of latent heat transport increases with increasing input power; however, the effect of the latent heat transport is not significant. (C) 2011 Elsevier B.V. All rights reserved.
Publisher
ELSEVIER SCIENCE SA
Issue Date
2012-02
Language
English
Article Type
Article
Keywords

THERMAL-CHARACTERISTICS; PIPES

Citation

SENSORS AND ACTUATORS A-PHYSICAL, v.174, pp.189 - 197

ISSN
0924-4247
DOI
10.1016/j.sna.2011.12.006
URI
http://hdl.handle.net/10203/99538
Appears in Collection
ME-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 44 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0