Well-Defined Star-Shaped Rod-Coil Diblock Copolymers as a New Class of Unimolecular Micelles: Encapsulation of Guests and Thermoresponsive Phase Transition

Cited 55 time in webofscience Cited 0 time in scopus
  • Hit : 536
  • Download : 12
A series of star-shaped rod-coil diblock copolymers composed of poly(arylene ether sulfone) (PAES) as a core, and poly[2-(2-methoxyethoxy)ethyl methacrylate-co-oligo(ethylene glycol) methacrylate] [poly(MEO(2)MA-co-OEGMA)] as a shell was synthesized by combination of chain-growth condensation polymerization (CGCP) and atom transfer radical polymerization (ATRP). In the presence of 4-arm initiator (1). CGCP of 4-fluoro-4'-hydroxydiphenyl sulfone potassium salt (2) via nucleophi lic aromatic substitution (S(N)Ar) reaction yielded a well-defined star-shaped polymer with lour fluorine end groups (C5-F and C8-F). Transformation of the fluorine groups into ATRP initiating sites produced a macroinitia tor having our bromine groups (C5-Br and C8-Br). In the presence of the macroinitiator. random copolymerization of MEO(2)MA and OEGMA via ATRP formed thermoresponsive shell blocks to produce it desired star-shaped PAES-b-poly(MEO(2)MA-co-OEGMA) block copolymer with various block lengths. Dynamic light scattering (DLS) of the star-shaped diblock copolymers in aqueous solutions revealed that hydrodynamic diameters (D(h)) of the polymers decreases significantly by addition of Nile Red due to the transition from polymeric aggregates to unimolecular micelles. Fluorescence spectroscopy confirmed that the polymers behave as unimolecular micelles in the encapsulation of Nile Red, but another transition into multimolecular polymer micelles was observed by UV/vis spectroscopy when the excess amount of Nile Red was used. Turbidity measurements of the polymer solutions indicated that unimolecular micellar state was necessary to exhibit lower critical solution temperature (LCST) if the shell length was relatively short compared to the core size. Macroscopic aggregation was observed above LCST, and removal of encapsulated guests from water was demonstrated by simple filtration.
Publisher
AMER CHEMICAL SOC
Issue Date
2010-10
Language
English
Article Type
Article
Citation

MACROMOLECULES, v.43, no.19, pp.8304 - 8313

ISSN
0024-9297
DOI
10.1021/ma101567p
URI
http://hdl.handle.net/10203/98279
Appears in Collection
NT-Journal Papers(저널논문)CH-Journal Papers(저널논문)
Files in This Item
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 55 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0