The effects of inflow pulsation on the flow characteristics and mixing properties of turbulent confined coaxial jet flows have been studied. Large eddy simulations were performed at Re = 9000 and the mean velocity ratio of the central to annular jet, U(i)/U(o), was 0.6. Pulsation was generated in the inflow jet by varying the flow rates. First, inflow pulsation was applied at frequencies in the range 0.1 < St < 0.9 while other parameters were fixed. The pulsation frequency responses were scrutinized by examining the phase- and time-averaged turbulence statistics. The pulsation frequencies St = 0.180 and 0.327 were found to produce the largest enhancement in mixing and the largest reduction in the reattachment length, respectively. The effects of the phase difference between the two inflow jets at these two optimal frequencies were then investigated. The optimal phase difference conditions for mixing enhancement and the reduction in the reattachment length were obtained when the strength of the outer vortices was high. Further, we found that the strength of the inner vortices was reduced by varying the phase difference, and the reattachment length was minimized, and that if the strength of the inner vortices was increased, mixing was enhanced. (C) 2010 Elsevier Inc. All rights reserved.