상에 단백질 및 관련 데이터의 축적에 따라, 도메인에 기반하여 단백질의 상호작용을 계산적으로 예측하는 많은 기법들이 제안되었다. 그러나, 대부분의 기법들이 예측에서 낮은 정확도와 복수개의 단백질 쌍에 대한 상호작용 가능성들 간에 순위 정보를 제공하지 못하는 등의 한계로 인하여 실무 적용에 한계를 가지고 있다. 본 논문에서는 도메인 조합 기반 단백질 상호작용 예측 기법을 재평가하고 상호작용하는 것으로 예측되는 복수개의 단백질 쌍들에서 이들의 상호작용 가능성들 간에 순위를 부여하는 방법을 제시한다. 순위 부여 방법은 도메인 조합에 기반한 단백질 상호작용 예측 방법의 틀 내에서 확률 식을 고안하여 제시한다. 제시된 순위 부여 기법을 사용함으로써, 상호작용을 하는 것으로 예측된 단백질 쌍들간에 상호작용 가능성이 좀 더 높은 것을 구별해 낼 수 있다. 또한 순위 부여 기법의 검증 과정에서 학습에 사용된 단백질 집단의 PIP(Primary Interaction Probability)값과 일치된 PIP값을 가지는 단백질 쌍 그룹의 경우에는, 상호작용 확률과 예측 정확도 사이에 상관관계가 존재함을 확인할 수 있었다.