Divisor class number one problem for abelian extensions over rational function fields

Cited 2 time in webofscience Cited 0 time in scopus
  • Hit : 203
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorJung H.ko
dc.contributor.authorAhn J.ko
dc.date.accessioned2013-03-06T19:18:43Z-
dc.date.available2013-03-06T19:18:43Z-
dc.date.created2012-02-06-
dc.date.created2012-02-06-
dc.date.issued2007-
dc.identifier.citationJOURNAL OF ALGEBRA, v.310, no.1, pp.1 - 14-
dc.identifier.issn0021-8693-
dc.identifier.urihttp://hdl.handle.net/10203/88128-
dc.description.abstractIn this paper we determine all the abelian extensions of rational function fields which have divisor class number one. We also determine all the imaginary abelian extensions with relative divisor class number one. (c) 2006 Elsevier Inc. All rights reserved.-
dc.languageEnglish-
dc.publisherACADEMIC PRESS INC ELSEVIER SCIENCE-
dc.subjectCYCLOTOMIC FUNCTION-FIELDS-
dc.titleDivisor class number one problem for abelian extensions over rational function fields-
dc.typeArticle-
dc.identifier.wosid000245822900001-
dc.identifier.scopusid2-s2.0-33847100437-
dc.type.rimsART-
dc.citation.volume310-
dc.citation.issue1-
dc.citation.beginningpage1-
dc.citation.endingpage14-
dc.citation.publicationnameJOURNAL OF ALGEBRA-
dc.identifier.doi10.1016/j.jalgebra.2003.02.006-
dc.contributor.localauthorAhn J.-
dc.contributor.nonIdAuthorJung H.-
dc.type.journalArticleArticle-
dc.subject.keywordAuthorcyclotomic function field-
dc.subject.keywordAuthordivisor class number-
dc.subject.keywordAuthorgenus-
dc.subject.keywordPlusCYCLOTOMIC FUNCTION-FIELDS-
Appears in Collection
RIMS Journal Papers
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 2 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0