A theoretical study of a spin polarized transport and giant magnetoresistance: The effect of the number of layers in a magnetic multilayer

Cited 0 time in webofscience Cited 0 time in scopus
  • Hit : 392
  • Download : 455
This study presents a quantum-mechanical free electron model for analyzing a spin polarized transport and current-perpendicular-to-the-plane giant magnetoresistance (CPP-GMR) in a more realistic way. The CPP-GMR is evaluated by using three spin resolved conductance parameters based on the Landauer conductance formula. In a ballistic regime, a transfer-matrix method is used to calculate the spin dependent transmission probability as a function of the transverse mode. A spin dependent conduction band structure is constructed by extracting parameters of the free electron model, such as the atomic magnetic moments and the conduction electron densities, from the spin dependent layer-decomposed density of states of the Cu and Co interfacial layers in a Cu5/Co11 slab; these calculations are derived from the density functional theory. As a result, this study shows that the CPP-GMR in a [Cu(5 ML)/Co(11 ML)](n) magnetic multilayer (n=2-5) with a 35 MLx35 ML cross section is in the range of 60%-111%. It is qualitatively comparable to the calculation results of first principles. This study also uses transmission probability to explain the increase of spin dependent scattering and CPP-GMR as a function of the number of layers in the [Cu/Co](n) magnetic multilayer. Moreover, the study confirms that modification of the free electron model by quantum-mechanical methods can be applied to calculations of a spin polarized transport and CPP-GMR in a specific material system. (c) 2008 American Institute of Physics.
Publisher
AMER INST PHYSICS
Issue Date
2008-04
Language
English
Article Type
Article
Keywords

AB-INITIO; PERPENDICULAR TRANSPORT; ELECTRICAL-CONDUCTIVITY; MOLECULAR-DYNAMICS; CO; SYSTEMS; NI; SUPERLATTICES; SCATTERING; JUNCTIONS

Citation

JOURNAL OF APPLIED PHYSICS, v.103, no.8, pp.083903-1 - 083903-8

ISSN
0021-8979
DOI
10.1063/1.2905316
URI
http://hdl.handle.net/10203/87065
Appears in Collection
MS-Journal Papers(저널논문)
Files in This Item
000255456200102.pdf(457.55 kB)Download

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0