Implementation of uniform and simultaneous ART for 3-D reconstruction in an X-ray imaging system

Cited 2 time in webofscience Cited 0 time in scopus
  • Hit : 384
  • Download : 0
The authors propose a 3-D volume reconstruction method using X-ray images with a calibration method to implement it in an X-ray imaging system. Previously the authors have proposed an advanced 3-D reconstruction algorithm based on an algebraic reconstruction technique (ART), called a uniform and simultaneous ART (USART). In practice, however, there are two main issues in implementing it in a realised X-ray imaging system. The first one is the huge computation time and memory required in achieving 3-D volume, which is a common limitation in most ART methods. The second issue is the system calibration for determining the geometry of the X-ray imaging conditions needed for the ART method. These two critical problems are addressed. A fast computing model of USART is proposed, where spherical voxel elements are employed in computation to reduce the computation time and memory. Then, a calibration method is proposed to identify the X-ray imaging geometry based on a cone beam projection model. For this purpose, a set of X-ray images of a reference grid pattern is used and the X-ray source positions are determined from the analysis of the image features, the centres of the grid points in the X-ray images. The validity of the proposed 3-D reconstruction method is investigated using a series of experiments.
Publisher
Institute of Electrical Engineers
Issue Date
2004-10
Language
English
Article Type
Article
Keywords

INSPECTION; IMAGES; LAMINOGRAPHY; ALGORITHM

Citation

IEE PROCEEDINGS: VISION, IMAGE AND SIGNAL PROCESSING, v.151, no.5, pp.360 - 368

ISSN
1350-245X
URI
http://hdl.handle.net/10203/82732
Appears in Collection
ME-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 2 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0